Relative Permeability for Offshore HPHT Reservoirs

NATIONAL

2021 Carbon Management and Oil and Gas Research Project Review Meeting

Project Description and Objectives

- Relative permeability (k_r) is the description of multiphase transport through porous media that is most widely accepted and utilized to scale relationships up to the field scale through simulations.
- Previous research at NETL has shown a dependence of k_r on the flow rates and porous media structure that is poorly captured in most descriptions of this process.
- ~3-year project to (2019-2022)
 - 1. Determine if this poor literature description is true for offshore environments.
 - 2. Collect data on the generation of relevant k_r curves for describing fluid flow in these environments: e.g. carbon storage and wellbore.
 - 3. Distribute this collected data, methodology and resultant curves via easily accessible platform.

Project Timeline Update

Due to budget constrictions, 3.5-year project

7.A – Complete gas/oil and water/oil k_r curves developed for a minimum of two flow rates through two different representative offshore cores. Eight k_r curves total. (Sept '19)

7.B - Complete literature review of available and most used k_r curves for EOR simulations in offshore environments. Will include fluids, flow rate, methods that have been used to derive these curves, and curve types. Required for following Go/No-Go decision point. (Dec '19)
 7.D - Perform a minimum of 4 additional gas/oil and water/oil tests to determine variations in the k_r-curves based of different representative offshore environments. (Dec '20)

7.E – Develop beta tool, populate and make available for industry review. Anticipating ~1/2 of tests completed and seek feedback from industry to direct work towards the highest priority missing data. (March '21)

7.F – Publish offshore EOR k_r tool. Fully functioning tool that offshore planners can access and utilize to reduce the uncertainty in their reservoir simulations of Offshore projects. (Sept '22)

7.C – March '20 Go/No-Go Decision
 No-Go: If existing k_r curves for water/oil and gas/oil flows in the literature, and within industrial knowledge, accurately describes the results obtained with the unsteady state methodology the project will be halted.
 Go: If the unsteady state methodology shows that existing data is lacking in accuracy.

Go / No-Go

Timeframe

TRL Score

Project

Completion

3

Milestone

NATIONAL

TECHNOLOGY

ABORATORY

	Impact								
	Key Accomplishments/Deliverables		Value Delivered						
•	Building upon techniques and tools developed in the FE Coal/Carbon Storage FWP, to directly measure variations in water/oil and gas/oil k _r curves within cores representative of offshore environments at subsurface temperature and pressure.	p ex	The product of this work is to deliver a database with measurements of relative permeability, residual saturation, and wettability for offshore storage and resource extraction simulations, and accessible tools for reservoir modelers to access this data and reduce uncertainty in their estimates.						
6			Chart Key						

So What is Relative Permeability?

- NATIONAL ENERGY TECHNOLOGY LABORATORY

 Relative permeability (k_r) is the ratio of effective permeability of a fluid with saturation less than 100% to absolute permeability

$$k_{rx} = \frac{k_x(sat)}{k}$$

- Numerous models
- Experimental data
 - Unsteady vs steady state
 - Relevance to field operations
 - Fits to models

Rod, K. et al (2019) Relative permeability for water and gas through fractures in cement, PLoS One 14(1): e0210741. https://doi.org/10.1371/journal.pone.0210741

Recap Literature Review

- Few studies of high permeability cores at subsea conditions using oil
 - Some decent sand pack studies
 - Very few core studies published from offshore wells
- Data from experiments not readily available
 - Ability to compare techniques and apply different curve fits difficult
- Steady state methods predominant

S. DEPARTMENT OF

• Injection of two fluids simultaneously

High permeability (760 mD) White Rim

Supplemental Figure 11: Saturation and k, curves for White Rim. (a-b) Saturation curves for flow experiments at 5.06 ml/min (a) and 2.81 ml/min (b). (c-d) Representative k, curves for flow experiments at 5.06 ml/min (c) and 2.81 ml/min (d).

With the few specific studies examining k_r from offshore EOR out there, go/no-go review was passed

Experimental Process

 Controlled injection of one fluid (N₂, H₂O, or CO₂) at elevated temperature and pressure conditions into core initially saturated with oil

Unsteady state method

• Computed tomography used to determine saturation over time and differential pressure measured

Moore et al. (2021) Rapid determination of supercritical CO2 and brine relative permeability using an unsteady-state flow method. Adv. In Water Res., 153.

Calculation Method

Toth et al. (2002) Convenient formulae for determination of relative permeability from unsteady-state fluid displacements in core plugs. J Petrol Sci & Eng, 36(1–2), 33–44.

Moore et al. (2021) Rapid determination of supercritical CO2 and brine relative permeability using an unsteady-state flow method. Adv. In Water Res., 153.

- Collect raw data
 - Pre, setup and during flood
- Calculate saturation of fluids from CT scanning via image processing
- Calculate mobility ratios of the fluids from the Toth et al (2002) method
- From the mobility ratios, plot the k_r(saturation)

U.S. DEPARTMENT OF

Distribution Platform

CO₂-Brine Relative Permeability Accessible database

https://edx.netl.doe.gov/hosting/co2bra

View All Experiment Results		Crude Oil Test Beta - Berea Sandstone					
Or Filter Results by: Rock Name • & Austin Chalk • & Edwards Yellow • & Lueders • & Silurian Dolomite • & Guelph • & Bandera Brown A • & Bandera Brown B		Depositional Environment: Straind Plain, Barrier Bar Rock Type: Sandstone Absolute Permeability 737.45 mD Porosity 0.194 Pore Fluid Brine (5%KI/3%KCl by weight) /Bakken Crude Displacing Fluid Supercritical CO2 Temperature 65.6 °C Pore Pressure 9.7 MPa Confining Pressure 13.8 MPa Pore Volume 59.6 ml Length 15.15 cm Diameter 5.08 cm Notes: First injection is scCO2 into oil saturated core. Second injection is scCO2 into brine filled core. MSCL Data					
• 🗹 Berea Sandstone	Query Filters:	Flow Rate Q (ml/min)	Flow Test S	Saturation Profile	Pore Volume Correction		
• 🗹 Castlegate	Rock Names Lueders, Berea Sandston Core	e B. Ca					
• Z Crude Oil Test Alpha - Berea Sandstone	Depositional Need, strand plain, barrie			Saturation Profile	Pore Volume Correction		
Crude Oil Test Beta - Berea Sandstone Z Navajo Sandstone White Rim	Enveronment Rock Type Carbonate, Sandhitone, V Permeability 0.0 to 99000.0 mD Porouity 0.0 to 9.0	8.022	Flow Test S	Saturation Profile	Pore Volume Correction		
• 🛛 Basalt	Results:						
Depositional Environment	0.05 Fic 0.025 Fic	w Test Seturation Profile w Test Saturation Profile w Test Saturation Profile					
	0.035 Fig	w Test Saturation Profile					
C Straind Plain, Barrier Bar Z Deltaic complex fluvial Berea Sandstone B				Flow test table column definitions			
			Propert Time (ad		justed to sync instruments.		
• 🗹 Aeolian	Rock Type: Sandstone		Tempera				
• 🗹 Volcanic	Depositional Environment: strand plain, barrier bar Flow Rate Q (ml/min) Flo	w Test Saturation Profile	Delta P (inlet to outlet of core in Pascals.		
		w Test Saturation Profile	Vi	Volume of CO ₂ injected in			
		w Test Saturation Profile	V/Vp Scotlang		s a fraction of total pore volume. If the core plug. (See equation 29) ¹		
Rock Type	5.0 Pic	w Test Saturation Profile	Scotz Scotz	Outlet face CO ₂ saturatio			
Rock Type:	2.0 Re	w Test Saturation Profile	Mccea		e outlet face. (See equation 26)1		
	4.0 Pic	w Test Saturation Profile	tonez	Dimensionless fractional	fluid flow for CD ₂ at outlet. (See equation 24) ¹		
• 🗹 Carbonate	5.0 Pic	w Test Saturation Profile	Fw2	Dimensionless fractional	fluid flow for brine at outlet. (See equation 25) ¹		
• 🗹 Dolomite			V(\$ _{C02,3})				
• 🗹 Sandstone	Castlegate Sandstone		Recoz -	Relative permeability of C			
• Sandstone	custicgute sufficient		k.W	Relative permeability of t	rine. (See equation 28) ¹		
Volcanic Mafic	4.0 Fic 2.0 Fic	w Text Seturation Profile in Test Saturation Profile in Test Saturation Profile	unstead-	T. Bodi, P. Szucz, F. Civan, Convenient state fluid displacements in core plug locorg/10.1016/50920-4105(02)00249-	Iormulae for determination of relative permeability from 		
	1.75 He	w Test Saturation Profile					

U.S. DEPARTMENT OF

Distance (mm

Receiving b q ml min	Delivery a p psi	Delivery a vol ml	Delivery a q ml min				-	Setra delivery p psi	Setra receive p psi	Diff p low psi	Temperature °C
0.0	1175.6	0.059	0.0	1412.6	1265.4705	8.022	4.534	1452.182	-13.157	8.836	17.33
0.0	1174.6	0.059	0.0	1408.8	1264.802	8.022	4.356	1447.041	-8.016	7.864	17.388
0.0	1173.8	0.059	0.0	1408.6	1264.1335	8.022	3.086	1447.041	-13.157	5.369	17.411

Initial Data

SscCO2,2

Rock name

Berea Sandstone

Project Updates

NATIONAL ENERGY TECHNOLOGY LABORATORY

Data collection underway

- There was a slow down on these floods earlier last year due to COVID but we have recovered
 - Currently have completed 6 experiments, with 3 viable results
 - Working on completing #7
 - 3 of the cores were not fully analyzed due to equipment failures resulting in lost tests
- Use of previously refined unsteady state methodology for CO_2 /brine k_r curve measurements still working well
 - Oil contamination of system, and resulting cleaning, results in slightly longer experiment times. We now have a fully developed methodology for QA/QC of equipment to mitigate this issue.
 - Oil attenuation is harder to differentiate from CO₂ than brine. We have had to modify our image analysis protocol

Project Next Steps

Continue measurements

• Close attention to the impact of high permeability/high connectivity porous structures

Low permeability (24 mD) Edwards Yellow

Technology-to-Market Path

- Continue adding data to the CO2BRA platform in 2021/2022
 Added value via data that can be used to model fluid behavior in offshall
- Added value via data that can be used to model fluid behavior in offshore environment for applications in carbon storage, wellbore-reservoir flow issues (blowout) and EOR.

High permeability (760 mD) White Rim

Project Next Steps

- Leverage ML and SMART
 to improve curve fits
 - Enhanced data filters
 - Multiple curve parameter simultaneous fits
- These improvements have led to research questions about appropriate k_r curve behavior after high pore volume injection, versus primary drainage behavior

NATIONAL

Concluding Remarks

- At the conclusion of this project, we will have an open platform with fluid relative permeability curves, data used to collect those curves, and explanations of the process. These curves will be generated for conditions relevant to the Offshore environment, with the benefits of:
 - Providing additional improved modeling parameters for

• CO₂ storage in petroleum plays

- $_{\odot}$ Wellbore blowout and near wellbore flow
- Providing open access to relative permeability data for oil/water/CO₂ systems
- The next 3 quarters will primarily be in finishing the data collection/analysis phase, with some preparation of the open online platform.
 - Strong push to obtain offshore cores. Currently have discussions ongoing with government agencies, academia and industry.

Thank you

Big thanks to Dustin Crandall, Kelly Rose, Paul Holcomb, Scott Workman, Jeong Choi, Seth King and all the others who have made this work possible.

Thank you for your interest today!

NATIONAL ENERGY TECHNOLOGY LABORATORY

Moore, J., Holcomb, P., Crandall, D., King, S., Choi, J., Brown, S., & Workman, S. (2021). Rapid determination of supercritical CO2 and brine relative permeability using an unsteady-state flow method. Advances in water resources, 153, . doi: <u>10.1016/j.advwatres.2021.103953</u>

Rod, K. A., Um, W., Colby, S. M., Rockhold, M. L., Strickland, C. E., Han, S., & Kuprat, A. P. (2019). Relative permeability for water and gas through fractures in cement. PloS one, 14(1), e0210741. <u>https://doi.org/10.1371/journal.pone.0210741</u>

Toth, Janos, Bodi, Tibor & Szucs, Peter & Civan, Faruk. (2002). Convenient Formulae for Determination of Relative Permeability from Unsteady-State Fluid Displacements in Core Plugs. Journal of Petroleum Science and Engineering. <u>36. 33-44. 10.1016/S0920-4105(02)00249-8</u>.

