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DOE Funds Cost Share

NC State Univ. 

Dr. Fanxing Li
$359,940 $68,452

Lehigh Univ. 

Dr. Israel Wachs
$290,000 $80,268

West Virginia Univ.

Dr. John Hu
$270,001 $67,500

Susteon Inc. 

Dr. Raghubir Gupta
$80,030 $15,000

Shell (CS Only) $0 $25,000

Total ($) $999,971 $256,220

Project Overview

Period of Performance: 04/01/2020 - 06/30/2023 (two budget periods) 

Project Objective: To design and demonstrate multifunctional catalysts 

to convert the light (dry) components of shale gas into liquid aromatic 

compounds and water in a modular oxidative aromatization system 

(OAS). 

BP1 Go/No-Go: Report Dehydroaromatization (DHA)/ selective 

hydrogen combustion (SHC) physical mixture (or composite) with > 

800 g/kgCat-hr aromatics productivity at <700 °C. 

End of Project Goals: (1) Report SHC-DHA catalysts for 100 hours of 

continuous operation with >40% single pass aromatics yield and <5% 

deactivation;  (2) Confirm 90% overall aromatics yield and 25% return 

on investment using refined process model. 



Modular Oxidative Aromatization System (OAS) 
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Conventional methane and ethane dehydroaromatization (DHA) is both highly 
endothermic and equilibrium limited.

6CH4→ C6H6+9H2 (ΔH=722 kJ/mol)

Integrating a zeolite catalyst shell on a perovskite oxide-based selective hydrogen 
combustion core can: (a) facilitate autothermal operation; (b) eliminate 
equilibrium limitation; (c) inhibit coke formation; (d) allow modular conversion 
of C1-C3 alkanes to aromatics in a greatly simplified process. 



Preliminary Data for the OAS Concept
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H2 combustion can lead to 10-fold increase in equilibrium aromatic yield. 

Dudek, et al. AIChE Journal, 2018. 64(8): 3141-3150
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Effect of SHC redox catalyst on DHA in a sequential bed configuration
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Technical Approach
BP1 (Month 1-18): SHC, DHA, and SHC-DHA catalyst optimizations and preliminary design/TEA.

Task 2 (Q1-Q4). SHC redox catalyst optimization (NCSU) and DHA catalyst optimization (WVU and Lehigh)
Milestone 2.1: SHC catalyst screening, Q1
Milestone 2.3.1: DHA catalyst screening, Q3
Milestone 2.3.2: DHA catalyst characterization, Q3

Task 3 (Q4-Q6). SHC-DHA catalyst development (NCSU, Lehigh, and WVU)
Milestone 3.1: SHC-DHA catalyst screening, Q5
Milestone 3.2: G0/No-go, Q6

Task 4 (Q3-Q6). Process design, optimization and simulation (Susteon)
Milestone 4.0: Process Model, Q4

BP2 (Month 19-36): SHC@DHA catalyst optimization, OAS demonstration, and detailed TEA.

Task 5 (Q7-Q10). SHC@DHA catalyst optimization (NCSU, Lehigh, and WVU)
Milestone 5.1: Core-shell synthesis/screening, Q8
Milestone 5.2 : Core-shell synthesis scale-up, Q10

Task 6 (Q8-Q12). Long term OAS demonstration
Milestone 6.1: Modular test unit commissioning, Q9
Milestone 6.2: Long-term OAS testing, Q11
Milestone 6.3: Post testing characterization, Q12

Task 7 (Q9-Q12). Process scale-up, comprehensive TEA, and commercialization plan development (Susteon)
Milestone 7.0: Final TEA, Q12

7



Success Criteria
BP1:

Report DHA/SHC physical mixture (or composite) with > 800 g/kgCat-hr aromatics productivity.

BP2 (End of Project Goals):

Report selected SHC-DHA catalyst for 100 hours of continuous operation with >40% single pass 
aromatics yield and <5% deactivation; 

Confirm 90% overall aromatics yield and 25% return on investment using refined process model. 
Develop commercialization roadmap with TEA and LCA for the OAS system.
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Risk Mitigation
Cost/Schedule Risks: Probability Impact Overall Mitigation Strategy

Delayed/Extended negotiations Med Low Low Facilities are in place for rapid ramp up

Technical/Scope Risks:

Insufficient DHA or SCH catalyst performance Low High Med Develop large library catalytic of materials and approaches;
rationalized catalyst design based on molecular insights

Compatibility issues between DHA and SHC
catalyst
Management, Planning, and Oversight Risks:
Delayed personnel ramp-up Low Low Low Sufficient personnel are in place and/or quickly filled (e.g. Ph.D.

students) for the project.



Synthesis Apparatus: CEM Microwave Synthesizer

• The zeolite synthesis is being optimized using the new CEM MW 
synthesizer 

• This will allow for shorter synthesis times and increased zeolite 
yields in comparison to the previous synthesis methods 
(conventional hydrothermal autoclaves and solid-state 
crystallization)

• Uses the same solution preparation as the original conventional 
hydrothermal autoclave method

• Two solutions are prepped and stirred for 4 hours before being 
placed in the two Teflon vessels with small stir bars

• The vessels are then placed in the CEM MW and run according to 
a temp/time matrix that was developed to find the optimal 
process conditions (still in the process of this)



Catalyst Testing and Characterizations



Summary of Project Progress – DHA %Mo & Carburization Study

• The goal of this study was to identify three or more selective DHA catalyst which have an 80% 
selectivity to aromatics and >500 g/kgCat-hr aromatic productivity.

• Four different Mo-loaded catalysts were prepared via incipient wetness impregnation of SAR 23 
commercial ZSM-5 and pretreated three different ways.

• Mo-Loading: 2.5%, 4%, 6% and 10%

• Carburization: None, CH4/H2 carburization, 
and a CH4 carburization

• 0.3g loaded into quartz reactor tube and 
heated to 700°C and held for four hours 
TOS

• At 700°C the production rate was not 
acquired

• Further testing of the 6% - CH4/H2 carb.
was performed 



Summary of Project Progress – Selectivity & Aromatic Prod. Study

• The 6%Mo – CH4/H2 carb. catalyst showed a better TOS stability in conversion than the other catalysts and 
was investigated further at different temperatures 700°C, 750°C, and 800°C

• At 750 and 800°C, the catalyst was able to successfully meet the goal proposed

• The reaction at 800°C shows the highest methane conversion and aromatic production however has a slight 
decrease in selectivity and rapid deactivation due to coke formation

• Additional promotors were added to the Mo catalyst and the same reaction test was performed at 750°C



Summary of Project Progress – SHA Selectivity & Aromatic Prod. Study

• A similar investigation was performed using 30% ethane, 4%Mo ZSM-5 at different reaction 
conditions (temperature, GHSV, and grams loaded)

• The production rate to aromatics was met by all the reactions performed at 650°C, however the 
large product distribution of ethane DHA makes the selectivity parameter hard to meet

• Additional testing of carburized catalysts CH4 and CH4/H2 showed no improvement over the 0.3 
grams reaction at 650°C



Summary of Project Progress - SHC

   

   

   

   

   

   

   

                              

 
  
 
  

 
  

  
 

  
 

  
 

          

    

    

     

         

         

                                     

   

   

   

   

   

   

                              

 
  
 
  

 
  

  
 

  
 

  
 

          

    

           

    

     

                       

   

   

   

   

   

   

                              

 
  
 
  

 
  

  
 

  
 

  
 

          

    

           

    

     

                       

   

   

   

   

   

   

                              

 
  
 
  

 
  

  
 

  
 

  
 

          

    

           

    

     

                       

   

   

   

   

   

   

                              

 
  
 
  

 
  

  
 

  
 

  
 

          

    

           

    

     

                       

   

   

   

   

   

   

                              

 
  
 
  

 
  

  
 

  
 

  
 

          

    

           

    

     

   

   

   

   

   

   

                     

 
 
 
 
 
 
 
 

 
   

 
  

 
  
  
 

   
  
 

                

             

             

             

      

      

      

Sample T (°C) Total H2 Combustion Selectivity w/o 

Coke 

Selectivity w/ 

Coke 

CaMnO3 650 1.40 mmol 70.4% N/A 

Na2WO4/CaMnO3 650 1.55 mmol 89.7% N/A 

Na2WO4/CaMnO3 700 1.60 mmol 79.6% 75.1% 

Na2WO4/SrMnO3 650 1.16 mmol 90.2% 76.9% 

Na2WO4/SrMnO3 700 1.15 mmol 82.5% 60.6% 

 

Co-feed of 1:1 H2/C6H6 on 500 mg of redox catalyst particles. Selectivity based 

on oxygen distribution basis; 75% oxygen distribution selectivity corresponds to 

97.8% selectivity (H2 combusted v.s. C6H6 combusted).
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0.7 g 3% Mo/HZSM-5 + 0.1 g Na2WO4/CaMnO3

DHA
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Summary of Project Progress – DHA + SHC Composite Bed

• DHA bed starts to work only when the SHC bed is fully 
consumed of active lattice oxygen.
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Other compositions tried:

Composition Result

Pre-carburized DHA + 
NW/CMO

Failed.

DHA+NW/CMO
(partially oxidized)

Failed.

Pre-carburized DHA + 
NW/CMO (partially 
oxidized)

Failed.

• Water concentration in our study = ~6.2 Vol.%

• Water concentration in Chem. Comm. paper on Mo/ZSM5+CGO = <2.7 Vol.%

• Note that CGO has poorer H2 conversion ability than Na2WO4/CaMnO3
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Summary of Project Progress – DHA + SHC 2-layer sequential bed
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• Na2WO4/CaMnO3 leads to H2 combustion = 93.2%.

• CO by-product is also combusted into CO2.

• Benzene formation rate is barely affected.

H2 combustion = 93.2%
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• H2O formed in the SHC bed deactivates benzene formation 

from the 2nd DHA bed. 

• 2nd DHA bed starts to form benzene only when the SHC bed 

is fully consumed of active lattice oxygen.



17

Summary of Project Progress – Alternative Approach
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• Gas mixture simulating the product after H2O removal was used as the feed for a second DHA step.

• Equivalently, the benzene yield in the alternative approach was ~40% more than a single DHA step.
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• This approach could achieve benzene yield ~8.2% at 700°C (total B+T up to 11%).

• H2O and CO2 leads to reforming reaction, forming CO.

Ethane DHA catalyst: GaPt/ZSM5

Summary of Project Progress – Alternative approach 
OCM + H2O removal+ DHA

Alternative approach flow diagram:
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In Situ Raman Characterization of SHC Catalysts 
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Metal Oxide Supports and Bulk Tungstate Reference Materials

• Spectra of the Mg6MnO8 mixed oxide support acquired under in situ oxidizing and reducing conditions (left figure) is dominated by
distorted MnO6 vibrations, which are reduced under a 5%C2H6/Ar flow.

• Conversely, the α-Al2O3 support remains stable even after 30 minutes under a 5%C2H6/Ar flow (left figure).
• The tungstate anion symmetric stretch vibration shifts from 947 to 878 cm-1 due to the interaction with the respective cations

(right figure), enabling the identification of the tungstate species present in the catalyst using Raman.



In Situ Raman Characterization of SHC Catalysts 
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α-Al2O3 supported Tungsten Oxide SHC Catalysts

• The in situ spectra of the 20%Na2WO4/Al2O3 catalyst (left figure) is dominated by Na2WO4 vibrations, with minor contribution from the α-
Al2O3 support at 367 and 403 cm-1. The acquired spectra suggest that the catalyst remains stable under reducing conditions.

• The in situ spectra of the 20%Na2W2O7/Al2O3 catalyst (right figure) is initially dominated by Na2W2O7 vibrations with a minor α-Al2O3

contribution at 403 cm-1. However, over time under reducing conditions, the W2O7
2- anion vibration shifts to lower wavenumbers indicative

of WO4
2- anions, and new unidentified vibrations rise at 198 and 272 cm-1. These results suggest that the Na2W2O7 melt phase on the α-

Al2O3 support is not stable under reducing conditions and may transform partially to Na2WO4.



In Situ Raman Characterization of SHC Catalysts 
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Mg6MnO8 supported Tungsten Oxide SHC Catalysts

• The in situ spectra of the 33%Na2WO4/Mg6MnO8 catalyst (left figure) is dominated by the Mg6MnO8 support under oxidative conditions.
However, the support rapidly reduces under a 5%C2H6/Ar flow, leaving only the sharp Na2WO4 vibrations visible.

• The 30%Na2W2O7/Mg6MnO8 catalyst’s in situ spectra (right figure) too is dominated by the Mg6MnO8 support vibration when oxidized, but
exhibits a weak MgWO4 vibration (907 cm-1). Once exposed to reducing conditions the Mg6MnO8 and MgWO4 vibrations rapidly decay, and
vibrations at 927 (probably Na2WO4), 886 and 122 (MnWO4) cm-1 become dominant. Over time the reducing environment transforms more
and more of the Na2WO4 to MnWO4, indicating a complex interaction between the tungstate and the Mg6MnO8 support during reaction.
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Energy Demand Comparison

• The principal reductions in net energy input come from:

• Reduction in overall process flowrate and resulting impacts on pre-heating, 

compression,  and refrigeration duties

• Simplified downstream separation requirements (particularly H2/CH4 cryogenic 

separation

• OAS technology enables modular operation 

• Non-oxidative DHA requires large scale demonstration due to H2/CH4 separation 

requirement

• OAS able to economically produce Aromatics at 50 bbl/day scale

           

            

          

                     

        

   

       

            

      

       

     

   

      

       

     

       

      

           

      

        

          

                 

                         

                    

           

             

            

          

                     

        

   

       

            

      

      

     

   

      

       

     

       

      

           

                       

                       

                        

                     

Values in MW (unless otherwise 

noted)

Base 

Case

OAS 

10%Y

OAS 

20%Y

OAS 

40%Y

NG for Heat (60% eff.) 1131.8 713.7 274.7 63.0

NG for Electricity (40% eff.) 655.5 344.9 0.0 -203.9

Fuel Requirement before Credits
1787.3 1058.5 274.7 63.0

Fuel NG Requirement after 

Credits
1080.1 1026.1 233.1 -148.8

Energy in Valuable Products 820.9 857.0 837.3 829.8

Net Energy Demand (Energy 

Lost) d
1659.2 1569.1 750.8 352.0

Aromatics Production Rate (kg/s)
18.8 19.4 19.0 18.8

Specific Net Energy Demand 

(MJ/kg)
88.3 80.9 39.6 18.7

% Reduction in Energy 

Demand
-- 8.4% 55.2% 78.8%

* Aromatics production basis set at 19 kg/s.
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Preliminary Economics: 50 bbl/day Modular Plant

• NCSU Oxidative Aromatization System (OAS) 
achieves a breakeven liquid aromatic production 
cost of $1.95/gal compared to a market price of 
$2.21/gal

• Capital expenditure and yield efficiency identified 
as major factors in final product cost

• Improving the reactor design can reduce the 
aromatic costs to <$1.50/gal

Parameter Units Low Base High

Total capital cost $/bbl/day 50,000 100,000 150,000

Natural gas price $/MMBTU 0 3 5

Capital recovery factor % 6 12.4 15

Reaction carbon efficiency % 50 80 95
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Plans for Future Development

Future work within the project:

• SHC and DHA catalyst optimizations;

• Optimization of the process scheme guided by TEA;

• Long-term OAS demonstration and post demonstration characterization;

• Finalization of TEA and scale-up roadmap.

Future work beyond the project:

• Further scale up testing (up to 1000 cuft/day);

• Detailed catalyst cost and scalability study;

• Detailed system design and costing;

• Demonstration and commercialization with industrial partner(s).



Summary Slide

Various ZSM based DHA catalysts have been developed, meeting the 500 

g/kgCat-hr and 80% aromatics selectivity target;

Effective SHC redox catalysts have been developed, demonstrating >200 

mol/kgCat-hr activity and >80% selectivity at 700 °C;

Efficient hydrogen combustion resulted in high steam concentration, 

eliminating the active sites on the DHA catalyst;

Alterative schemes for methane DHA have been developed, showing 

excellent aromatics yields;

In-situ characterization of the catalysts generated mechanistic insights;

TEA indicates that the proposed OAS technology has excellent potential for 

energy savings and emission reduction.



Thanks for the support!
Questions or suggestions?
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Appendix: Project Schedule
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Task Name Start End Team Member Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10 Q11 Q12

Task 1 Project Management Jan 2020 Jan 2023 NCSU/Susteon

Subtask 1.1. Project Management Plan Jan 2020 Feb 2023 NCSU

Milestone 1.1: Update PMP Feb 2023 NCSU ◊

Subtask 1.2. Technology Maturation Plan Jan 2020 March 2020 NCSU/Susteon

Milestone 1.2: Create TMP March 2020 NCSU/Susteon ◊

Subtask 1.3. Techno-Economic Analysis (TEA) Jan 2020 July 2020 NCSU/Susteon

Milestone 1.3: Revise TEA July 2020 Susteon ◊

Task 2.0: SHC redox catalyst and DHA catalyst optimization Jan 2020 Jan 2021 NCSU/Lehigh/WVU

Subtask 2.1. SHC redox catalyst synthesis and screening Jan 2020 Jan 2021 NCSU

Milestone 2.1: SHC catalyst screening NCSU ◊

Subtask 2.2. Redox catalyst characterization and optimization NCSU/Lehigh

Subtask 2.3. DHA catalyst synthesis/characterization/testing Jan 2020 Jan 2021 NCSU/Lehigh/WVU

Milestone 2.3.1: DHA catalyst screening Oct 2020 NCSU/WVU ◊

Milestone 2.3.2: DHA catalyst characterization Oct 2020 Lehigh ◊

Subtask 2.4. Stability/regeneration studies of DHA catalyst Jan 2020 Jan 2021 Lehigh/WVU

Task 3.0: SHC-DHA catalyst development Nov 2020 July 2021 NCSU/Lehigh/WVU

Subtask  3.1. Compatibility studies of DHA/SHC catalysts Nov 2020 July 2021 NCSU

Milestone 3.1: SHC-DHA screening April 2021 NCSU ◊

Subtask 3.2. Composite SHC-DHA catalyst synthesis/testing Nov 2020 July 2021 NCSU

Milestone 3.2 Go/No-go July 2021 NCSU ◊

Task 4.0: Process Scale-Up and Commercialization Planning July 2020 July 2021 NCSU/Susteon/Shell

Milestone 4.0: Process Model Jan 2021 Susteon ◊

Task 5.0: SHC-DHA catalyst development and optimization July 2021 July 2022 NCSU/Lehigh/WVU

Subtask 5.1. Synthesis/optimization of SHC@DHA core-shell July 2021 April 2022 WVU/NCSU

Milestone 5.1: Core-shell synthesis/screening Oct 2021 NCSU ◊

Subtask 5.2. SHC@DHA core-shell/SHC-DHA catalysts scale upOct 2021 July 2022 WVU

Milestone 5.2: Catalyst synthesis scale-up July 2022 WVU ◊

Subtask 5.3. Stability studies and performance comparisons July 2021 July 2022 NCSU

Subtask 5.4. SHC@DHA/SHC-DHA characterization studies July 2021 July 2022 Lehigh

Task 6.0: OAS Demo Oct 2022 Jan 2023 NCSU

Subtask 6.1. Modular testing unit design and fabrications Oct 2022 Aprli 2022 NCSU

Milestone 6.1: Modular test unit commissioning April 2022 NCSU ◊

Subtask 6.2. Long term testing of the OAS process Jan 2022 Jan 2023 NCSU

Milestone 6.2: Long-term OAS Testing Oct 2022 ◊

Subtask 6.3. SHC-DHA catalyst characterizations April 2022 Jan 2023 Lehigh 

Milestone 6.3: Post testing characterization Jan 2023 Lehigh ◊

Task 7.0: Process Simulations and Final TEA Jan 2022 Jan 2023 Susteon

Subtask 7.1. Techno-economic Redox Catalyst Optimization Jan 2022 Jan 2023 Susteon

Subtask 7.2. Synthesis optimization for scale-up Jan 2022 Jan 2023 Susteon

Milestone 7.0: Final TEA April 2023 Susteon ◊

BP 1 BP2

Task Name Start End Team Member Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10 Q11 Q12

Task 1 Project Management Jan 2020 Jan 2023 NCSU/Susteon

Subtask 1.1. Project Management Plan Jan 2020 Feb 2023 NCSU

Milestone 1.1: Update PMP Feb 2023 NCSU ◊

Subtask 1.2. Technology Maturation Plan Jan 2020 March 2020 NCSU/Susteon

Milestone 1.2: Create TMP March 2020 NCSU/Susteon ◊

Subtask 1.3. Techno-Economic Analysis (TEA) Jan 2020 July 2020 NCSU/Susteon

Milestone 1.3: Revise TEA July 2020 Susteon ◊

Task 2.0: SHC redox catalyst and DHA catalyst optimization Jan 2020 Jan 2021 NCSU/Lehigh/WVU

Subtask 2.1. SHC redox catalyst synthesis and screening Jan 2020 Jan 2021 NCSU

Milestone 2.1: SHC catalyst screening NCSU ◊

Subtask 2.2. Redox catalyst characterization and optimization NCSU/Lehigh

Subtask 2.3. DHA catalyst synthesis/characterization/testing Jan 2020 Jan 2021 NCSU/Lehigh/WVU

Milestone 2.3.1: DHA catalyst screening Oct 2020 NCSU/WVU ◊

Milestone 2.3.2: DHA catalyst characterization Oct 2020 Lehigh ◊

Subtask 2.4. Stability/regeneration studies of DHA catalyst Jan 2020 Jan 2021 Lehigh/WVU

Task 3.0: SHC-DHA catalyst development Nov 2020 July 2021 NCSU/Lehigh/WVU

Subtask  3.1. Compatibility studies of DHA/SHC catalysts Nov 2020 July 2021 NCSU

Milestone 3.1: SHC-DHA screening April 2021 NCSU ◊

Subtask 3.2. Composite SHC-DHA catalyst synthesis/testing Nov 2020 July 2021 NCSU

Milestone 3.2 Go/No-go July 2021 NCSU ◊

Task 4.0: Process Scale-Up and Commercialization Planning July 2020 July 2021 NCSU/Susteon/Shell

Milestone 4.0: Process Model Jan 2021 Susteon ◊

Task 5.0: SHC-DHA catalyst development and optimization July 2021 July 2022 NCSU/Lehigh/WVU

Subtask 5.1. Synthesis/optimization of SHC@DHA core-shell July 2021 April 2022 WVU/NCSU

Milestone 5.1: Core-shell synthesis/screening Oct 2021 NCSU ◊

Subtask 5.2. SHC@DHA core-shell/SHC-DHA catalysts scale upOct 2021 July 2022 WVU

Milestone 5.2: Catalyst synthesis scale-up July 2022 WVU ◊

Subtask 5.3. Stability studies and performance comparisons July 2021 July 2022 NCSU

Subtask 5.4. SHC@DHA/SHC-DHA characterization studies July 2021 July 2022 Lehigh

Task 6.0: OAS Demo Oct 2022 Jan 2023 NCSU

Subtask 6.1. Modular testing unit design and fabrications Oct 2022 Aprli 2022 NCSU

Milestone 6.1: Modular test unit commissioning April 2022 NCSU ◊

Subtask 6.2. Long term testing of the OAS process Jan 2022 Jan 2023 NCSU

Milestone 6.2: Long-term OAS Testing Oct 2022 ◊

Subtask 6.3. SHC-DHA catalyst characterizations April 2022 Jan 2023 Lehigh 

Milestone 6.3: Post testing characterization Jan 2023 Lehigh ◊

Task 7.0: Process Simulations and Final TEA Jan 2022 Jan 2023 Susteon

Subtask 7.1. Techno-economic Redox Catalyst Optimization Jan 2022 Jan 2023 Susteon

Subtask 7.2. Synthesis optimization for scale-up Jan 2022 Jan 2023 Susteon

Milestone 7.0: Final TEA April 2023 Susteon ◊

BP 1 BP2
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Tasks 

2,3&5

PI Li

NC State University

Co-PI

Gupta

Susteon

Engineer

Susteon

Tasks 4&7

Task

1,4,7

Postdoc

Tasks 1-3,5,6

Co-PI

Hu

WVU

Student

Tasks 2,3&5

Co-PI

Wachs

Lehigh                     WVU

Lehigh 

Student

Tasks

2,5

Shell
Consultation on 

Tasks 4, 6 & 7



Risk Management
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Milestones
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Task# Milestone Title & Description Due Verification method

1.1 Update PMP BP1-Q1 Submit updated PMP
1.2 Create TMP BP1-Q1 Submit TMP

2.1
SHC Catalyst Screening: Report 4 SHC redox catalysts with hydrogen combustion activity of 200

mol/kgCat-hr and 80% selectivity at 700 °C.
BP 1-Q1 Report reaction data in Q-Report

1.3 Revise TEA BP1-Q2 Submit Revised TEA

2.3.1
DHA Cat. Screening: Report 3 or more DHA catalysts with > 500 g/kgCat-hr aromatics productivity

and > 80% selectivity at <700 °C
BP1-Q3 Report reaction data in Q-Report

2.3.2
DHA Cat. Characterization: Identify DHA catalysts phases and structures under reaction

conditions.
BP1-Q3 Report data for 2 DHA catalyst.

4.0
Process Model: Report ASPEN models for a base case (non-oxidative DHA) reactor and OAS

showing >50% reduction in net energy demand
BP1-Q4

Report energy demand for OAS vs. 

base-case

3.1.
SHC-DHA Screening: Report 3 or more physical mixtures (or composite) catalysts with > 20%

single pass aromatics yield.
BP2-Q5 Report reaction data in Q-Report

3.2. Go/No-go: Report DHA-SHC composite with > 800 g/kgCat-hr aromatics productivity at < 700 °C. BP1-Q6 Report reaction data in Q-Report

5.1
Core-shell Synthesis/Screening: Report three or more SHC@DHA (or composite) catalysts with >

30% single pass aromatics yield.
BP2-Q8 Report reaction data in Q-Report

6.1
Modular test unit commissioning: Report >50 ml/day aromatic productivity using >10 g physically

mixed DHA-SHC catalyst bed at < 700 °C
BP2-Q9 Report reaction data in Q-Report

5.2
Catalyst synthesis scale-up: Prepare 20+ gram batch of DHA@SCH core-shall (or composite)

catalyst for long-term testing
BP2-Q10

Report activity data of large batch 

catalyst

6.2

Long-Term OAS Testing: Report selected SHC-DHA catalyst for 100 hours of continuous operation

with >40% single pass aromatics yield and <5% deactivation, showing >200 ml/day aromatics

productivity at 650 °C.

BP2-Q11 Report reaction data in Q-Report

6.3
Post testing characterization: Determine phase and surface properties of the catalyst after the 

long-term stability test.
BP2-Q12

Report Characterization in final 

report

7.0
Final TEA: Confirm 90% overall aromatics yield and 25% return on investment using refined 

process model. Develop commercialization roadmap with TEA and LCA for the OAS system.
BP2-Q12 Report final TEA at end of project


