Core-Shell Oxidative Aromatization Catalysts for Single Step Liquefaction of Distributed Shale Gas

Fanxing Li

NC State University

Project Partners: West Virginia University, Lehigh University, Susteon Inc. and Shell

DOE/NETL Project Manager: Anthony Zammerilli

Outline

- Project Overview and Technology Background
- Technical Approach and Current Status
- Future development plan
- Summary

Project Overview

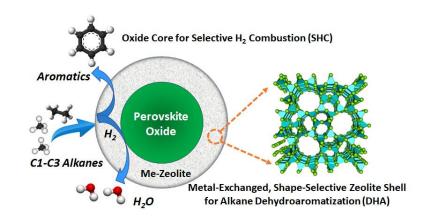
Period of Performance: 04/01/2020 - 06/30/2023 (two budget periods)

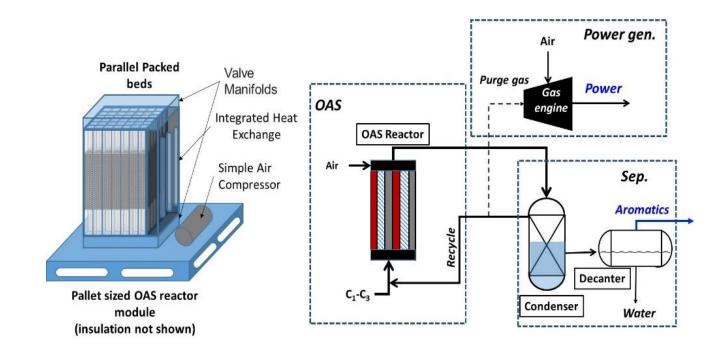
	DOE Funds	Cost Share
NC State Univ. Dr. Fanxing Li	\$359,940	\$68,452
Lehigh Univ. Dr. Israel Wachs	\$290,000	\$80,268
West Virginia Univ. Dr. John Hu	\$270,001	\$67,500
Susteon Inc. Dr. Raghubir Gupta	\$80,030	\$15,000
Shell (CS Only)	\$0	\$25,000
Total (\$)	\$999,971	\$256,220

Project Objective: To design and demonstrate multifunctional catalysts to convert the light (dry) components of shale gas into liquid aromatic compounds and water in a modular oxidative aromatization system (OAS).

BP1 Go/No-Go: Report Dehydroaromatization (DHA)/ selective hydrogen combustion (SHC) physical mixture (or composite) with > 800 g/kgCat-hr aromatics productivity at <700 °C.

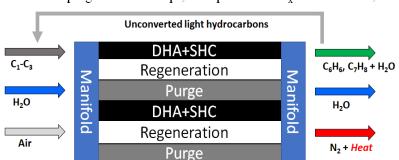
End of Project Goals: (1) Report SHC-DHA catalysts for 100 hours of continuous operation with >40% single pass aromatics yield and <5% deactivation; (2) Confirm 90% overall aromatics yield and 25% return on investment using refined process model.





NC STATE UNIVERSITY

Modular Oxidative Aromatization System (OAS)



Cyclic operation in two steps:

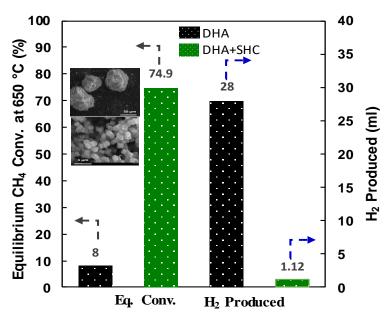
• **DHA+SHC:** $6CH_4 + 9[O] \rightarrow C_6H_6 + 9H_2O$

• Regeneration: $O_2 \rightarrow 2[O] + heat$

• Steam purge between steps, also prevents CO_v accumulation;

Conventional methane and ethane dehydroaromatization (DHA) is both highly endothermic and equilibrium limited.

$$6CH_4 \leftarrow C_6H_6 + 9H_2$$
 ($\Delta H = 722 \text{ kJ/mol}$)


Integrating a zeolite catalyst shell on a perovskite oxide-based selective hydrogen combustion core can: (a) facilitate autothermal operation; (b) eliminate equilibrium limitation; (c) inhibit coke formation; (d) allow modular conversion of C1-C3 alkanes to aromatics in a greatly simplified process.

Preliminary Data for the OAS Concept

© 0.5

DHA

0.30

12.0 -DHA+SHC - DHA+SHC ■DHA+ Flowrate (mmol C/min) SHC Flowrate (mL/min) 0.20 Benzene Benzene Toluene 0.15 Toluene 0.10 0.05 2.0 0.00 Time (min) Time (min)

- - · DHA

14.0

 $- - \cdot DHA$

H₂ combustion can lead to 10-fold increase in equilibrium aromatic yield.

Effect of SHC redox catalyst on DHA in a sequential bed configuration

Outline

- Project Overview and Technology Background
- Technical Approach and Current Status
- Future development plan
- Summary

Technical Approach

BP1 (Month 1-18): SHC, DHA, and SHC-DHA catalyst optimizations and preliminary design/TEA.

Task 2 (Q1-Q4). SHC redox catalyst optimization (NCSU) and DHA catalyst optimization (WVU and Lehigh)

Milestone 2.1: SHC catalyst screening, Q1

Milestone 2.3.1: DHA catalyst screening, Q3

Milestone 2.3.2: DHA catalyst characterization, Q3

Task 3 (Q4-Q6). SHC-DHA catalyst development (NCSU, Lehigh, and WVU)

Milestone 3.1: SHC-DHA catalyst screening, Q5

Milestone 3.2: G0/No-go, Q6

Task 4 (Q3-Q6). Process design, optimization and simulation (Susteon)

Milestone 4.0: Process Model, Q4

BP2 (Month 19-36): SHC@DHA catalyst optimization, OAS demonstration, and detailed TEA.

Task 5 (Q7-Q10). SHC@DHA catalyst optimization (NCSU, Lehigh, and WVU)

Milestone 5.1: Core-shell synthesis/screening, Q8

Milestone 5.2 : Core-shell synthesis scale-up, Q10

Task 6 (Q8-Q12). Long term OAS demonstration

Milestone 6.1: Modular test unit commissioning, Q9

Milestone 6.2: Long-term OAS testing, Q11

Milestone 6.3: Post testing characterization, Q12

Task 7 (Q9-Q12). Process scale-up, comprehensive TEA, and commercialization plan development (Susteon)

Milestone 7.0: Final TEA, Q12

Success Criteria

BP1:

Report DHA/SHC physical mixture (or composite) with > 800 g/kgCat-hr aromatics productivity.

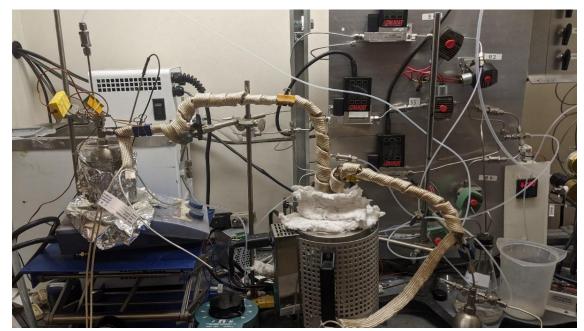
BP2 (End of Project Goals):

Report selected SHC-DHA catalyst for 100 hours of continuous operation with >40% single pass aromatics yield and <5% deactivation;

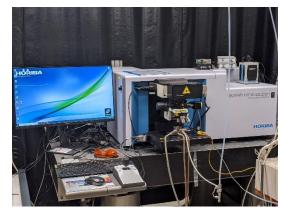
Confirm 90% overall aromatics yield and 25% return on investment using refined process model. Develop commercialization roadmap with TEA and LCA for the OAS system.

Risk Mitigation

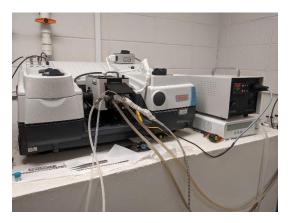
Cost/Schedule Risks:	Probability	Impact	Overall	Mitigation Strategy
Delayed/Extended negotiations	Med	Low	Low	Facilities are in place for rapid ramp up
Technical/Scope Risks:				
Insufficient DHA or SCH catalyst performance	Low	High	Med	Develop large library catalytic of materials and approaches; rationalized catalyst design based on molecular insights
Compatibility issues between DHA and SHC catalyst				
Management, Planning, and Oversight Risks:				
Delayed personnel ramp-up	Low	Low	Low	Sufficient personnel are in place and/or quickly filled (e.g. Ph.D. students) for the project.


Synthesis Apparatus: CEM Microwave Synthesizer

- The zeolite synthesis is being optimized using the new CEM MW synthesizer
- This will allow for shorter synthesis times and increased zeolite yields in comparison to the previous synthesis methods (conventional hydrothermal autoclaves and solid-state crystallization)
- Uses the same solution preparation as the original conventional hydrothermal autoclave method
- Two solutions are prepped and stirred for 4 hours before being placed in the two Teflon vessels with small stir bars
- The vessels are then placed in the CEM MW and run according to a temp/time matrix that was developed to find the optimal process conditions (still in the process of this)



Catalyst Testing and Characterizations



Summary of Project Progress – DHA %Mo & Carburization Study

- The goal of this study was to identify three or more selective DHA catalyst which have an 80% selectivity to aromatics and >500 g/kgCat-hr aromatic productivity.
- Four different Mo-loaded catalysts were prepared via incipient wetness impregnation of SAR 23 commercial ZSM-5 and pretreated three different ways.
 - Mo-Loading: 2.5%, 4%, 6% and 10%
 - Carburization: None, CH₄/H₂ carburization, and a CH₄ carburization
- 0.3g loaded into quartz reactor tube and heated to 700°C and held for four hours TOS
- At 700°C the production rate was not acquired
- Further testing of the 6% CH4/H2 carb.
 was performed

Table 1: Mo-Loading and Carburization Study at 700°C								
lable 1: Mo-Loading and	Carburization	Study at 700°C						
Mo-Loaded ZSM-5	Methane	Selectivity to	Total Aromatic Production Rate					
Catalysts (wt. %) and	Conversion	Aromatics (%)	(g/kgCat-hr)					
Carburization Method	(%)							
2.5%Mo – no carb	12.8	84.3	333					
2.5%Mo – CH ₄ /H ₂	12.2	85.2	312					
2.5%Mo – CH ₄	10.0	84.1	245					
4%Mo – no carb	15.4	86.2	427					
4%Mo – CH ₄ /H ₂	12.5	85.5	321					
4%Mo – CH ₄	7.3	85.5	269					
6%Mo – no carb	15.5	84.7	380					
6%Mo – CH ₄ /H ₂	13.5	87.1	413					
6%Mo – CH ₄	13.0	86.2	340					
10%Mo – no carb	25.6	80.6	305					
10%Mo - CH ₄ /H ₂	20.0	87.4	444					
10%Mo – CH ₄	11.3	85.7	292					

Summary of Project Progress – Selectivity & Aromatic Prod. Study

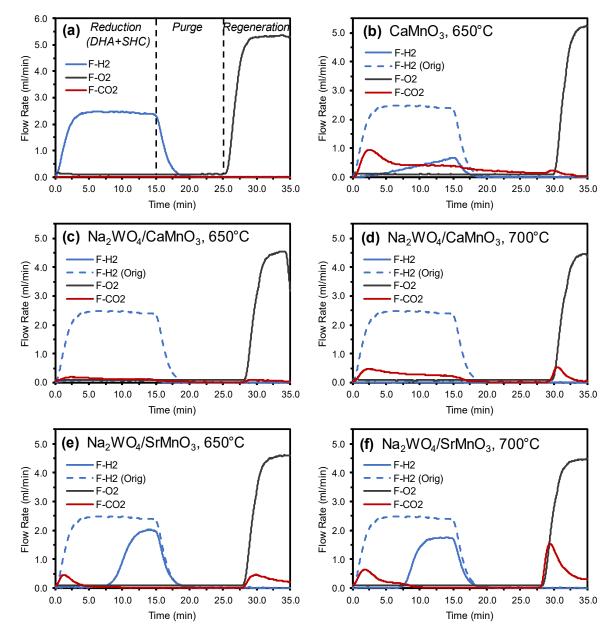
- The 6%Mo CH4/H2 carb. catalyst showed a better TOS stability in conversion than the other catalysts and was investigated further at different temperatures 700°C, 750°C, and 800°C
- At 750 and 800°C, the catalyst was able to successfully meet the goal proposed
- The reaction at 800°C shows the highest methane conversion and aromatic production however has a slight decrease in selectivity and rapid deactivation due to coke formation

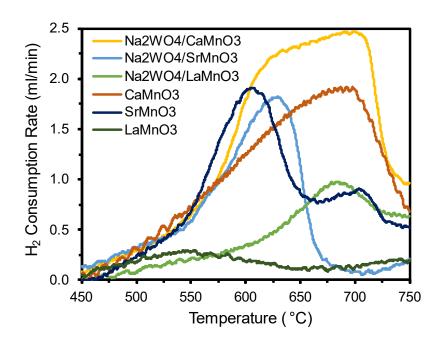
Table 2: Temperature Study of 6%Mo ZSM-5 – CH ₄ /H ₂ Carb Catalyst									
6%Mo ZSM-5 – CH ₄ /H ₂ Carb	Methane Selectivity to Total Aromatic Pro								
	Conversion (%)	Aromatics (%)	Rate (g/kgCat-hr)						
700°C	13.5	87.1	413						
750°C	15.5	87.1	523						
800°C	20.9	86.0	704						

Additional promotors were added to the Mo catalyst and the same reaction test was performed at 750°C

Table 3: Promoter Study of the Mo ZSM-5 – CH ₄ /H ₂ Carb Catalyst at 750°C								
Metal-Loaded ZSM-5	Methane	Selectivity to	Total Aromatic Production					
Catalysts with the	Conversion (%)	Aromatics (%)	Rate (g/kgCat-hr)					
Additional Secondary								
Promoters								
6%Mo ZSM-5	15.5	87.1	523					
5.5%Mo 0.5%Fe ZSM-5	17.3	84.3	625					
5.5%Mo 0.5%Ga ZSM-5	14.5	86.5	512					

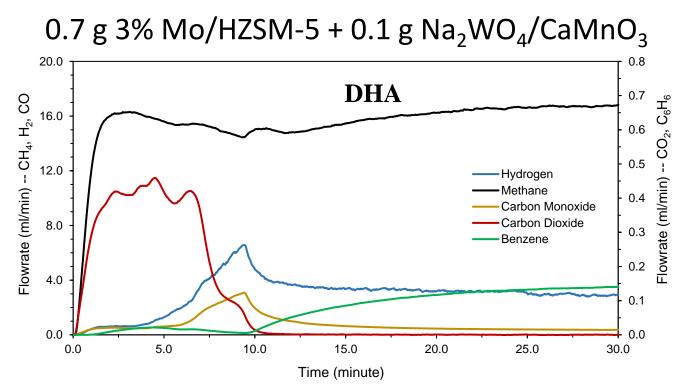
Summary of Project Progress – SHA Selectivity & Aromatic Prod. Study


- A similar investigation was performed using 30% ethane, 4%Mo ZSM-5 at different reaction conditions (temperature, GHSV, and grams loaded)
- The production rate to aromatics was met by all the reactions performed at 650°C, however the large product distribution of ethane DHA makes the selectivity parameter hard to meet
- Additional testing of carburized catalysts CH_4 and CH_4/H_2 showed no improvement over the 0.3 grams reaction at 650°C


Table 4: Ethane Study of 4%Mo ZSM-5 Under Different Reaction Conditions									
Grams Loaded	GHSV	Temperature (°C)	Ethane	Selectivity to	Production Rate				
(grams)	(mL/hr/gram		Conversion (%)	Aromatics (%)	to Aromatics				
	catalyst)				(g/kgCat-hr)				
0.2	9000	650	40.6	28.8	608.5				
0.2	6000	650	55.2	30.4	501.2				
0.3	6000	650	57.2	30.8	520.0				
0.3	6000	625	45.5	30.0	451.3				
0.3	6000	600	34.4	28.3	336.9				

NC STATE UNIVERSITY

Summary of Project Progress - SHC

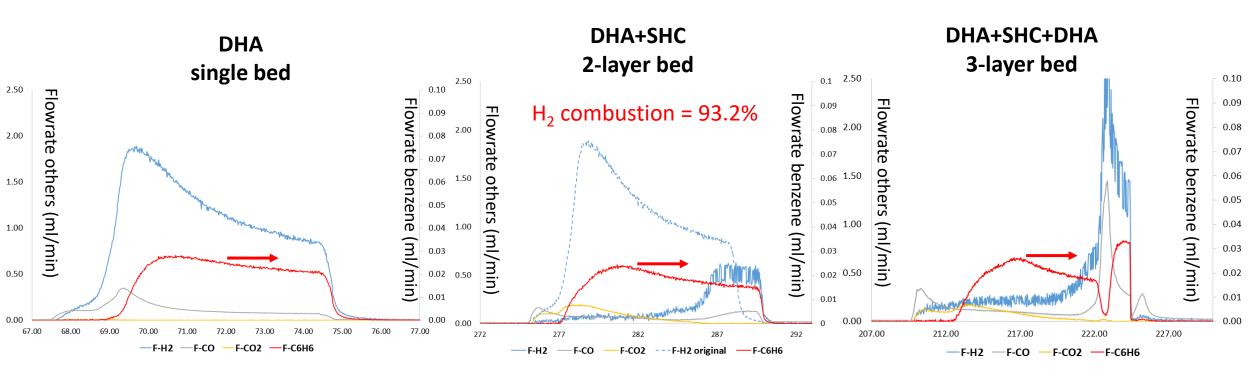


Sample	T (°C)	Total H ₂ Combustion	Selectivity w/o	Selectivity w/
			Coke	Coke
CaMnO ₃	650	1.40 mmol	70.4%	N/A
Na ₂ WO ₄ /CaMnO ₃	650	1.55 mmol	89.7%	N/A
Na ₂ WO ₄ /CaMnO ₃	700	1.60 mmol	79.6%	75.1%
Na ₂ WO ₄ /SrMnO ₃	650	1.16 mmol	90.2%	76.9%
Na ₂ WO ₄ /SrMnO ₃	700	1.15 mmol	82.5%	60.6%

Co-feed of 1:1 H_2/C_6H_6 on 500 mg of redox catalyst particles. Selectivity based on oxygen distribution basis; 75% oxygen distribution selectivity corresponds to 97.8% selectivity (H_2 combusted v.s. C_6H_6 combusted).

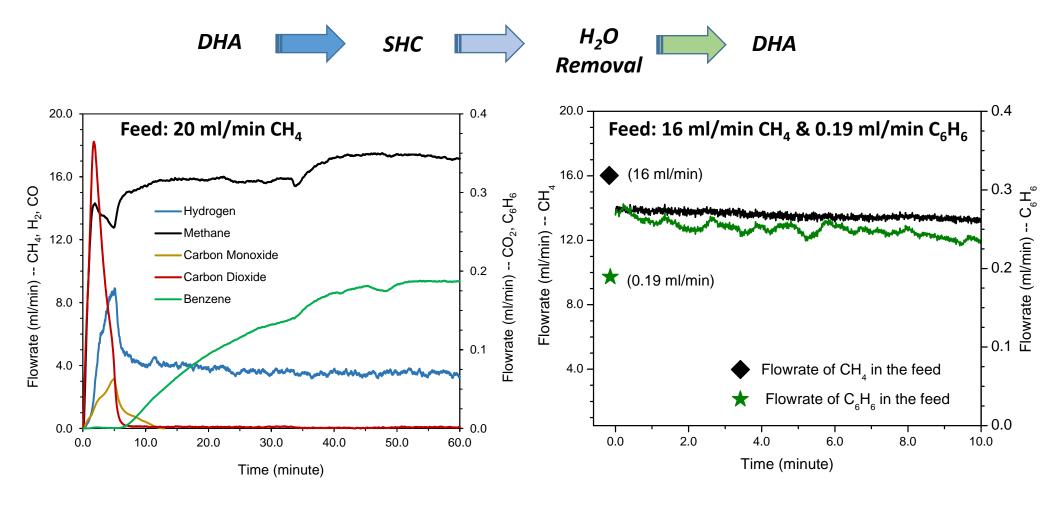
Summary of Project Progress – DHA + SHC Composite Bed

 DHA bed starts to work only when the SHC bed is fully consumed of active lattice oxygen.


Other compositions tried:

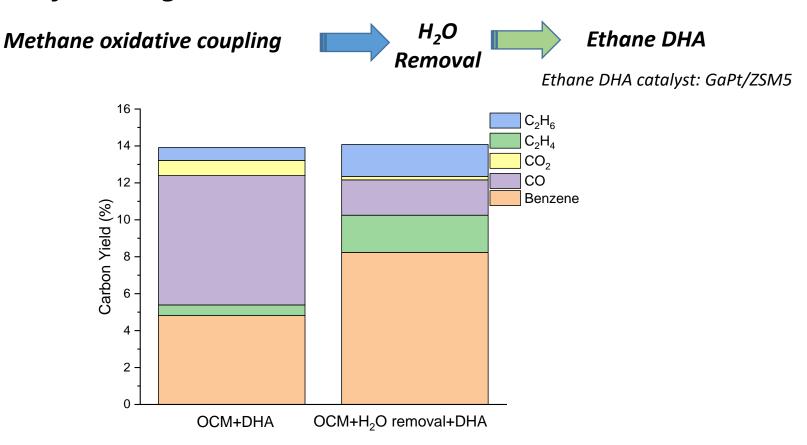
Composition	Result
Pre-carburized DHA + NW/CMO	Failed.
DHA+NW/CMO (partially oxidized)	Failed.
Pre-carburized DHA + NW/CMO (partially oxidized)	Failed.

- Water concentration in our study = ~6.2 Vol.%
- Water concentration in Chem. Comm. paper on Mo/ZSM5+CGO = <2.7 Vol.%
 - Note that CGO has poorer H₂ conversion ability than Na₂WO₄/CaMnO₃


Summary of Project Progress – DHA + SHC 2-layer sequential bed

- Na₂WO₄/CaMnO₃ leads to H₂ combustion = 93.2%.
- CO by-product is also combusted into CO₂.
- Benzene formation rate is barely affected.

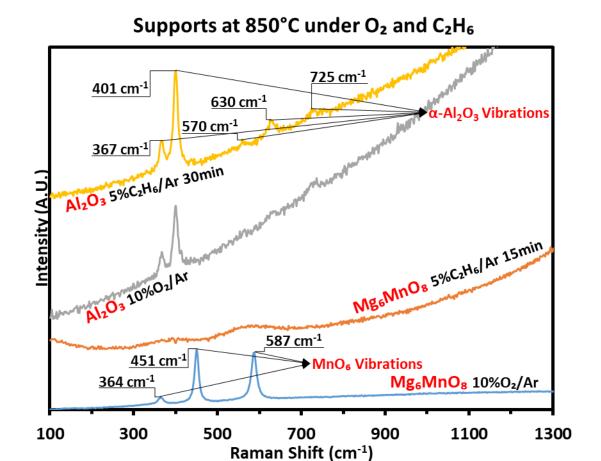
- H_2O formed in the SHC bed deactivates benzene formation from the 2^{nd} DHA bed.
- 2nd DHA bed starts to form benzene only when the SHC bed is fully consumed of active lattice oxygen.

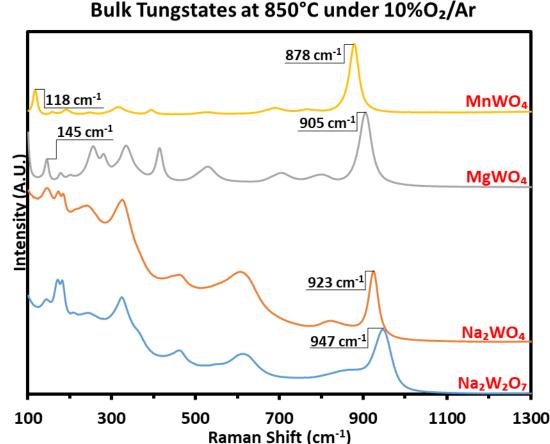

Summary of Project Progress – Alternative Approach

- Gas mixture simulating the product after H₂O removal was used as the feed for a second DHA step.
- Equivalently, the benzene yield in the alternative approach was ~40% more than a single DHA step.

Summary of Project Progress – Alternative approach OCM + H₂O removal+ DHA

Alternative approach flow diagram:


- This approach could achieve benzene yield ~8.2% at 700°C (total B+T up to 11%).
- H₂O and CO₂ leads to reforming reaction, forming CO.



In Situ Raman Characterization of SHC Catalysts

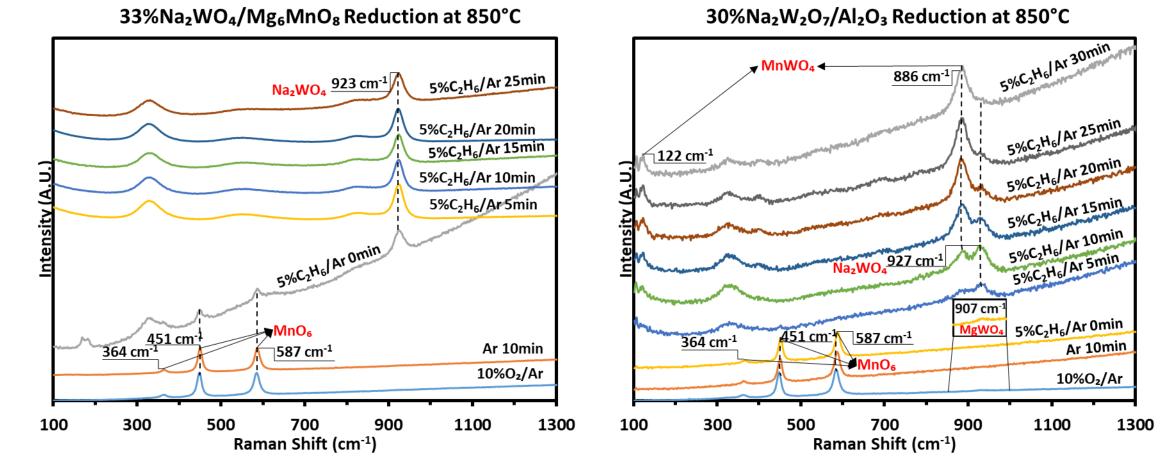
Metal Oxide Supports and Bulk Tungstate Reference Materials

- Spectra of the Mg₆MnO₈ mixed oxide support acquired under *in situ* oxidizing and reducing conditions (**left figure**) is dominated by distorted MnO₆ vibrations, which are reduced under a 5%C₂H₆/Ar flow.
- Conversely, the α -Al₂O₃ support remains stable even after 30 minutes under a 5%C₂H₆/Ar flow (**left figure**).
- The tungstate anion symmetric stretch vibration shifts from 947 to 878 cm⁻¹ due to the interaction with the respective cations (**right figure**), enabling the identification of the tungstate species present in the catalyst using Raman.

In Situ Raman Characterization of SHC Catalysts

α -Al₂O₃ supported Tungsten Oxide SHC Catalysts

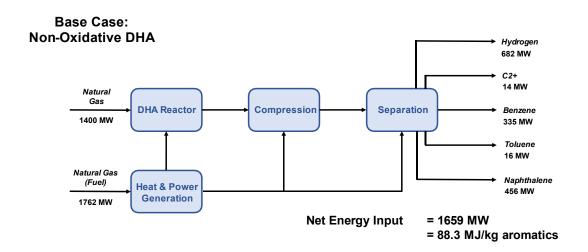
- The *in situ* spectra of the $20\%Na_2WO_4/Al_2O_3$ catalyst (**left figure**) is dominated by Na_2WO_4 vibrations, with minor contribution from the α Al_2O_3 support at 367 and 403 cm⁻¹. The acquired spectra suggest that the catalyst remains stable under reducing conditions.
- The *in situ* spectra of the $20\%Na_2W_2O_7/Al_2O_3$ catalyst (**right figure**) is initially dominated by $Na_2W_2O_7$ vibrations with a minor α -Al $_2O_3$ contribution at 403 cm $^{-1}$. However, over time under reducing conditions, the $W_2O_7^{2-}$ anion vibration shifts to lower wavenumbers indicative of WO_4^{2-} anions, and new unidentified vibrations rise at 198 and 272 cm $^{-1}$. These results suggest that the $Na_2W_2O_7$ melt phase on the α -Al $_2O_3$ support is not stable under reducing conditions and may transform partially to Na_2WO_4 .

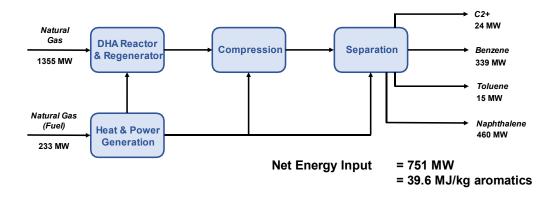

20%Na₂WO₄/Al₂O₃ Reduction at 850°C 20%Na₂W₂O₇/Al₂O₃ Reduction at 850°C Na₂WO₄ 923 cm⁻¹ 92<u>3 cm⁻¹ Na₂WO₄</u> 272 cm⁻¹ 198 cm⁻¹ 5%C₂H₆/Ar 30min 5%C₂H₆/Ar 30min 5%C₂H₆/Ar 25min 5%C₂H₆/Ar 25min 5%C₂H₆/Ar 20min 5%C₂H₆/Ar 20min Intensity (A. 5%C₂H₆/Ar 15min 5%C₂H₆/Ar 15min 5%C₂H₆/Ar 10min 5%C₂H₆/Ar 10min 947 cm⁻¹Na₂W₂O₇ 5%C₂H₆/Ar 5min 5%C₂H₆/Ar 5min 5%C₂H₆/Ar 0min 5%C₂H₆/Ar 0min Ar 10min Ar 10min 367 cm⁻¹ 401 cm⁻¹α-Al₂O₃ 403 cm⁻¹ →α-Al₂O₃ 10%O₂/Ar 10%O₂/Ar 300 700 300 700 900 100 500 900 1100 1300 100 500 1100 1300 Raman Shift (cm⁻¹) Raman Shift (cm⁻¹)

In Situ Raman Characterization of SHC Catalysts

Mg₆MnO₈ supported Tungsten Oxide SHC Catalysts

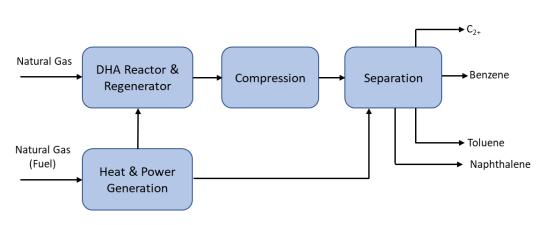
- The *in situ* spectra of the $33\%Na_2WO_4/Mg_6MnO_8$ catalyst (**left figure**) is dominated by the Mg_6MnO_8 support under oxidative conditions. However, the support rapidly reduces under a $5\%C_2H_6/Ar$ flow, leaving only the sharp Na_2WO_4 vibrations visible.
- The 30%Na₂W₂O₇/Mg₆MnO₈ catalyst's *in situ* spectra (**right figure**) too is dominated by the Mg₆MnO₈ support vibration when oxidized, but exhibits a weak MgWO₄ vibration (907 cm⁻¹). Once exposed to reducing conditions the Mg₆MnO₈ and MgWO₄ vibrations rapidly decay, and vibrations at 927 (probably Na₂WO₄), 886 and 122 (MnWO₄) cm⁻¹ become dominant. Over time the reducing environment transforms more and more of the Na₂WO₄ to MnWO₄, indicating a complex interaction between the tungstate and the Mg₆MnO₈ support during reaction.

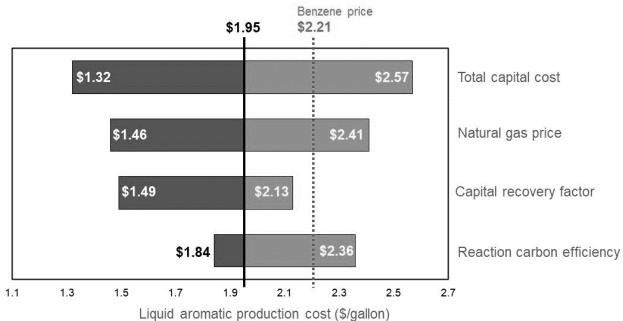

Energy Demand Comparison


Values in MW (unless otherwise	Base	OAS	OAS	OAS
noted)	Case	10%Y	20%Y	40%Y
NG for Heat (60% eff.)	1131.8	713.7	274.7	63.0
NG for Electricity (40% eff.)	655.5	344.9	0.0	-203.9
Fuel Requirement before Credits	1787.3	1058.5	274.7	63.0
Fuel NG Requirement after	1000 1	1026.1	222.1	1400
Credits	1080.1	1026.1	233.1	-148.8
Energy in Valuable Products	820.9	857.0	837.3	829.8
Net Energy Demand (Energy	1659.2	1569.1	750.8	352.0
Lost) d	1007.2	1507.1	720.0	332.0
Aromatics Production Rate (kg/s)	18.8	19.4	19.0	18.8
Specific Net Energy Demand	00.2	90.0	20.6	10.7
(MJ/kg)	88.3	80.9	39.6	18.7
% Reduction in Energy		8.4%	55.2%	78.8%
Demand		0.4 70	55.470	70.0%

^{*} Aromatics production basis set at 19 kg/s.

- The principal reductions in net energy input come from:
 - Reduction in overall process flowrate and resulting impacts on pre-heating, compression, and refrigeration duties
 - Simplified downstream separation requirements (particularly H₂/CH₄ cryogenic separation
- OAS technology enables modular operation
 - Non-oxidative DHA requires large scale demonstration due to H₂/CH₄ separation requirement
 - OAS able to economically produce Aromatics at 50 bbl/day scale


Oxidative Aromatization System (OAS): 20% Yield


Preliminary Economics: 50 bbl/day Modular Plant

- NCSU Oxidative Aromatization System (OAS) achieves a breakeven liquid aromatic production cost of \$1.95/gal compared to a market price of \$2.21/gal
- Capital expenditure and yield efficiency identified as major factors in final product cost
- Improving the reactor design can reduce the aromatic costs to <\$1.50/gal

Parameter	Units	Low	Base	High
Total capital cost	\$/bbl/day	50,000	100,000	150,000
Natural gas price	\$/MMBTU	0	3	5
Capital recovery factor	%	6	12.4	15
Reaction carbon efficiency	%	50	80	95

Outline

- Project Overview and Technology Background
- Technical Approach and Current Status
- Future development plan
- Summary

Plans for Future Development

Future work within the project:

- SHC and DHA catalyst optimizations;
- Optimization of the process scheme guided by TEA;
- Long-term OAS demonstration and post demonstration characterization;
- Finalization of TEA and scale-up roadmap.

Future work beyond the project:

- Further scale up testing (up to 1000 cuft/day);
- Detailed catalyst cost and scalability study;
- Detailed system design and costing;
- Demonstration and commercialization with industrial partner(s).

Summary Slide

Various ZSM based DHA catalysts have been developed, meeting the 500 g/kgCat-hr and 80% aromatics selectivity target;

Effective SHC redox catalysts have been developed, demonstrating >200 mol/kgCat-hr activity and >80% selectivity at 700 °C;

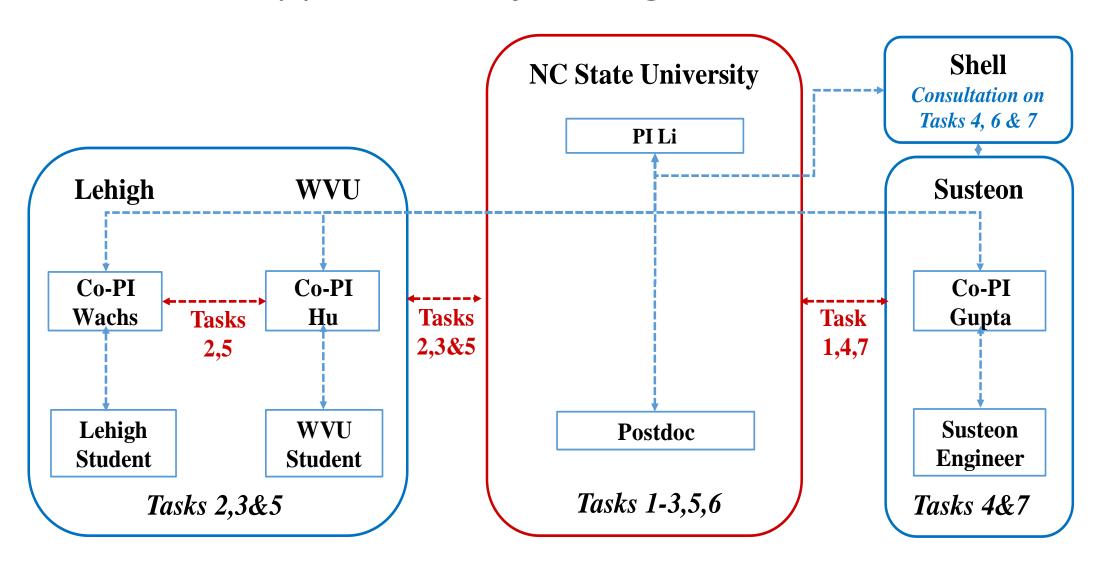
Efficient hydrogen combustion resulted in high steam concentration, eliminating the active sites on the DHA catalyst;

Alterative schemes for methane DHA have been developed, showing excellent aromatics yields;

In-situ characterization of the catalysts generated mechanistic insights;

TEA indicates that the proposed OAS technology has excellent potential for energy savings and emission reduction.

Thanks for the support! Questions or suggestions?



NC STATE UNIVERSITY Appendix: Project Schedule

	<u>,</u>			DE	. 1						D2		
Tarl Manna	T N 4	01	BP 1 Q1 Q2 Q3 Q4 Q5 Q6			07	00		P2	244	043		
Task Name	Team Member	Qī	QZ	Q3	Q4	Q5	Qь	Q١	Ų8	Q9 L	110 C	711	Q12
Task 1 Project Management	NCSU/Susteon												
Subtask 1.1. Project Management Plan	NCSU												
Milestone 1.1: Update PMP	NCSU	٥											
Subtask 1.2. Technology Maturation Plan	NCSU/Susteon												
Milestone 1.2: Create TMP	NCSU/Susteon	٥											
Subtask 1.3. Techno-Economic Analysis (TEA)	NCSU/Susteon												
Milestone 1.3: Revise TEA	Susteon		٥										
Task 2.0: SHC redox catalyst and DHA catalyst optimization	NCSU/Lehigh/WVU												
Subtask 2.1. SHC redox catalyst synthesis and screening	NCSU			1									
Milestone 2.1: SHC catalyst screening	NCSU	٥		į									
Subtask 2.2. Redox catalyst characterization and optimization				į									
Subtask 2.3. DHA catalyst synthesis/characterization/testing	NCSU/Lehigh/WVU			ļ	ļ								
Milestone 2.3.1: DHA catalyst screening	NCSU/WVU			٥į	į								
Milestone 2.3.2: DHA catalyst characterization	Lehigh			٥١	1								
Subtask 2.4. Stability/regeneration studies of DHA catalyst	Lehigh/WVU												
Task 3.0: SHC-DHA catalyst development	NCSU/Lehigh/WVU				44								
Subtask 3.1. Compatibility studies of DHA/SHC catalysts	NCSU												
Milestone 3.1: SHC-DHA screening	NCSU					٥							
Subtask 3.2. Composite SHC-DHA catalyst synthesis/testing	NCSU						1						
Milestone 3.2 Go/No-go	NCSU						\O						
Task 4.0: Process Scale-Up and Commercialization Planning	NCSU/Susteon/Shel												
Milestone 4.0: Process Model	Susteon				◊								
Task 5.0: SHC-DHA catalyst development and optimization	NCSU/Lehigh/WVU							*					
Subtask 5.1. Synthesis/optimization of SHC@DHA core-shell	WVU/NCSU												
Milestone 5.1: Core-shell synthesis/screening	NCSU								٥,				
Subtask 5.2. SHC@DHA core-shell/SHC-DHA catalysts scale up	WVU									4			
Milestone 5.2: Catalyst synthesis scale-up	WVU										P		
Subtask 5.3. Stability studies and performance comparisons	NCSU										\		
Subtask 5.4. SHC@DHA/SHC-DHA characterization studies	Lehigh										Ì		
Task 6.0: OAS Demo	NCSU										- 1		
Subtask 6.1. Modular testing unit design and fabrications	NCSU										1		
Milestone 6.1: Modular test unit commissioning	NCSU									٥,	1		
Subtask 6.2. Long term testing of the OAS process	NCSU										1	1	
Milestone 6.2: Long-term OAS Testing												٥.	
Subtask 6.3. SHC-DHA catalyst characterizations	Lehigh											,,	4
Milestone 6.3: Post testing characterization	Lehigh												٥
Task 7.0: Process Simulations and Final TEA	Susteon												
Subtask 7.1. Techno-economic Redox Catalyst Optimization	Susteon												
Subtask 7.2. Synthesis optimization for scale-up	Susteon												
Milestone 7.0: Final TEA	Susteon												٥

Appendix: Project Organizational Structure

Risk Management

	Risk Rating			
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy
	(Low, Med,	High)		
Financial Risks:				
N/A	N/A	N/A	N/A	Project not dependent upon outside finance
Cost/Schedule Risks:			_	
Delayed/Extended negotiations	Med	Low	Low	Facilities are in place for rapid ramp up
Technical/Scope Risks:				
Insufficient DHA-SCH catalyst performance	Low	High	Med	Develop large library catalytic of materials and approaches; rationalized catalyst design based on molecular insights
Management, Planning, and C	 Dversight Risk	s:		
Delayed personnel ramp-up	Low	Low	Low	Sufficient personnel are in place and/or quickly filled (e.g. Ph.D. students) for the project.
ES&H Risks:	•	•		· · · · · · · · · · · · · · · · · · ·
N/A	N/A	N/A	N/A	Use of existing laboratory facilities and procedures
External Factor Risks:				7
None/NA				

NC STATE UNIVERSITY

Milestones

Task#	Milestone Title & Description	Due	Verification method
1.1	Update PMP	BP1-Q1	Submit updated PMP
1.2	Create TMP	BP1-Q1	Submit TMP
2.1	SHC Catalyst Screening: Report 4 SHC redox catalysts with hydrogen combustion activity of 200 mol/kgCat-hr and 80% selectivity at 700 °C.	BP 1-Q1	Report reaction data in Q-Report
1.3	Revise TEA	BP1-Q2	Submit Revised TEA
2.3.1	DHA Cat. Screening: Report 3 or more DHA catalysts with > 500 g/kgCat-hr aromatics productivity and > 80% selectivity at <700 $^{\circ}$ C	BP1-Q3	Report reaction data in Q-Report
2.3.2	DHA Cat. Characterization: Identify DHA catalysts phases and structures under reaction conditions.	BP1-Q3	Report data for 2 DHA catalyst.
4.0	Process Model: Report ASPEN models for a base case (non-oxidative DHA) reactor and OAS showing >50% reduction in net energy demand	BP1-Q4	Report energy demand for OAS vs. base-case
3.1.	SHC-DHA Screening: Report 3 or more physical mixtures (or composite) catalysts with > 20% single pass aromatics yield.	BP2-Q5	Report reaction data in Q-Report
3.2	Go/No-go: Report DHA-SHC composite with > 800 g/kgCat-hr aromatics productivity at < 700 °C.	BP1-Q6	Report reaction data in Q-Report
5.1	Core-shell Synthesis/Screening: Report three or more SHC@DHA (or composite) catalysts with > 30% single pass aromatics yield.	BP2-Q8	Report reaction data in Q-Report
6.1	Modular test unit commissioning: Report >50 ml/day aromatic productivity using >10 g physically mixed DHA-SHC catalyst bed at $< 700 ^{\circ}\text{C}$	BP2-Q9	Report reaction data in Q-Report
5.2	Catalyst synthesis scale-up: Prepare 20+ gram batch of DHA@SCH core-shall (or composite) catalyst for long-term testing	BP2-Q10	Report activity data of large batch catalyst
	Long-Term OAS Testing: Report selected SHC-DHA catalyst for 100 hours of continuous operation		
6.2	with >40% single pass aromatics yield and <5% deactivation, showing >200 ml/day aromatics productivity at 650 °C.	BP2-Q11	Report reaction data in Q-Report
6.3	Post testing characterization: Determine phase and surface properties of the catalyst after the long-term stability test.	BP2-Q12	Report Characterization in final report
7.0	Final TEA: Confirm 90% overall aromatics yield and 25% return on investment using refined process model. Develop commercialization roadmap with TEA and LCA for the OAS system.	BP2-Q12	Report final TEA at end of project