In-Situ Applied Coatings for Mitigating Gas Hydrate Deposition in Deepwater Operations Project# DE-FE0031578 – Program Manager: <u>Bill Fincham</u>

<u>C.A. Koh</u>, M. Pickarts, J. Delgado, S. Navaneetha Kannan *Colorado School of Mines* V. Veedu, E. Brown, *Oceanit*

> U.S. Department of Energy National Energy Technology Laboratory 2021 Carbon Management and Oil and Gas Research Project Review Meeting August 2021

Presentation Outline

- Project Overview & Background & Scope
- Technical Progress & Status
 - Robust Coatings for Deepwater Operations
 - Mitigating Gas Hydrate & Other FA Solids Deposition
- Accomplishments to Date
- Lessons Learned & Synergies
- Project Summary

2

Project Overview

- Funding: DOE: \$1,497,543, Costshare: \$374,386
- Overall Project Performance Dates: 3/2018 3/2022
- Project Participants
 - CSM: Carolyn Koh, Marshall Pickarts, Jose Delgado
 - Oceanit: Vinod Veedu, Erika Brown, Oceanit
- Overall Project Objectives
 - Develop for *field & commercial deployment* robust pipeline coatings to mitigate hydrate & other solids deposition
 - Multiphase flowloop evaluations in simulated field conditions & field test plans

<u>Technology Background</u>: Hydrates in Flow Assurance

Hydrates Cause Major Economic & Safety Risks During Energy Production & Transportation

- Hydrate formation in oil/gas flowlines
- #1 problem in flow assurance
- Costly to prevent
 - \$1M/mile of pipeline +
 \$100M/year in THI chemicals
- Costly to remove
- **Safety concern** (pipe rupture, personnel fatalities/injuries, environmental hazards

Koh et al., Annual Reviews, 2011

Safety & Environmental Risks Due to Hydrate Plugs Fatalities & Injuries in the Field

Motivation for Hydrate Deposition

A Major Outstanding & Critical Flow Assurance Problem

- Flowloop tests show agglomeration alone cannot account for large ΔP increase¹
- ExxonMobil field trial suggests hydrate deposits caused majority of ΔP increases²

1. Majid, Koh et al., OTC 2017

2. Lachance et al., *Energy Fuels* 2012

Project Objectives to Address Key FA Technology Challenge

Develop for field & commercial deployment robust pipeline coatings to mitigate hydrate deposition in subsea oil flowlines

- Hydrate-phobic coating system applied in-situ to existing (corroded) pipelines
 – Tested up to 8000 psia, 400 F to -20 F
- Multiphase deposition flowloop evaluations in simulated field conditions
- Investigations under simulated field conditions & field test plans

Sloan & Koh, Clathrate Hydrates of 7 Natural Gases, CRC Press, 2007

<u>Project Scope:</u> Flow Assurance Solids – Hydrates/Wax/Asphaltenes

Flow assurance solids can occur in several steps in subsea oil & gas production leading to *severe safety and economic risks*

Hydrates

Critical Parameters

Pressure Temperature

Waxes

Asphaltenes

- Temperature
- Composition

- Pressure
- Composition

Project Organization and Milestones

PROGRESS & CURRENT STATUS OF PROJECT

CURRENT STATUS OF PROJECT

Simulated field conditions

Rocking cells Cold Finger/Coupon Coupon/Loop

Flowloop

Optimized Omniphobic Coating for Commercialization

Water-Dispersible, Low Viscosity, Nano-Structured Polymer Topcoat Capable of In-Situ Application to Existing Materials

12

Surface: Metals,

Concretes, Composites

Thickness: ~100 µm

Hydrate-Phobic Coatings Tests in **Deposition Loop**

Deposit Section: Length: 225 in (5.72 m) OD: 2 in (5.08 cm) Volume: 2.68 gal (10.14 L)

Gas

Blower

Separator

Bore-Scope Ports

Port (1/4")

Hydrate Deposition Mitigated in Oil-Dominated Systems

- Deposition Loop Hydrate mitigation with surface treatment
 - \blacktriangleright SS & Transient tests show no plugs with coating (6+ mo)
 - Induction times delayed for oil/gas-dominated (up to 230+ h)
 - Show the reduced by $\sim 60+\%$

Asphaltene Deposition Mitigated in Oil-Dominated Systems

Wax Deposition Mitigation in Oil-Dominated Systems

Wax Deposition Loop Testing with Simulated GoM Wax Composition

Long-Term Coating Durability

- 6+ Months High Pressure Testing
 - ~3300 Operating Hours
 - Solid Particle/Fluid Flow
 - Pressure Cycles

No corrosion \rightarrow No delamination

Long-Term Coating Durability: ASTM Cold Wall & Pressurized Tests

ASTM D6943-15 C, ASTM D6943-15 B2 (seawater, toluene/kerosene) – significant protection by DragX (7 days) Control DragX

Surface Materials Properties & Mechanisms Contributing to Deposition & Mitigation

Surface	Dispersive Surface Energy [mJ/m2]	Polar Surface Energy [mJ/m2]	Total Surface Energy [mJ/m2]	Median Surface Roughness [µm]	
Carbon Steel	137	1.8	139	0.82	
Stainless Steel	82.2	0.41	82.61,2	1.9	1
Copper	348	1.4	350 ³	0.1	
PTFE	20.8	0.3	21.14	0.1	
DragX	15.4	0.5	16	0.27	

In-Situ Application Development

- DragX can be applied in-situ to production lines via pigging
- Can also be applied to new pipes by spray, flush, or paint

Focused Towards Field Deployment

Field test plans – discussion with industry (May 5,6,18, June 2, 2021)

Simulated XoM field trial conditions to design field test

Project Summary

- Hydrates, waxes, and asphaltenes are top flow assurance challenges
 - Complex systems typically require site-specific solutions
 - Significant safety & economic consequences result from incorrect practice
- Low surface energy, omniphobic surface treatments shown to mitigate deposition of multiple flow assurance solids
 - Flowloop tests show deposition resistance in field-simulated conditions
 - Nucleation & growth delayed in hydrate-forming system
 - Application & survivability in field conditions show promise for lasting FA treatment & field test plan underway

Acknowledgements

- U.S. Department of Energy / NETL for funding & Bill Fincham, Program Manager (Award no.: DE-FE0031578)
- Industry Advisors: Douglas Estanga (Chevron), Khalid Mateen (Total), Doug Turner, Giovanny Grasso (ExxonMobil), and Daniel Crosby (Shell)

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Project Organization for Deployment of Coatings

Gant Chart

		Phase I (2018-2019)		Phase II (2019-2020)			Phase III (2020-2022)						
Task #	Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q3 Q4		Q3-4	Q5-6	Q7-8
1.0	Project Management and Planning												
2.0	Loop Modification and Baseline Testing												
2.1	Loop Modification												
2.2	Deposition Experiments												
Α	Flowloop Upgrade Completed												
3.0	Material Design, Formulation and Optimization												
3.1	Evaluation of Coating Performance												
3.2	Durability and Chemical Compatibility Testing												
В	Coating Formulation Optimized												
4.0	Flow Properties Characterization												
4.1	Lab Characterization												
4.2	Flowloop Measurements												
5.0	Documentation and Reporting												
	TECHNICAL GO/NO GO DECISION POINT 1												
6.0	Shut-in/Startup Testing												
7.0	Simulated Fluid Conditions												
7.1	Adhesion Measurements using Waxes/Asphaltenes												
7.2	2 Deposition Testing using Waxes/Asphaltenes												
8.0	In Situ Application Method Development												
8.1	Application and Curbing Procedures												
8.2	Development of Quality Control Parameters												
С	In Situ Application Achieved												
9.0	Design and Planning for Field Tests												
9.1	Site Selection and Experimental Design												
9.2	Multiphase Modeling of Field Site												
D	Field Trial Experimental Plan Developed												
10.0	Documentation and Reporting												
	TECHNICAL GO/NO GO DECISION POINT 2												
11.0	Loop Scale Testing of Simulated Field Conditions												
11.1	Single Component Flow loop Experiments												
11.2	Multi-Component Flwoloop Experiments												
12.0	Long Term Evaluation												
12.1	Extended Service Guidelines and Durability												
12.2	Compatibility with In-line Tools												
E	Verify Long Term Coating Durability												
13.0	Initialize Planning for Field Testing												
F	Field Trial Partner/Site Identified												
14.0	Documentation and Reporting												
			Curre	nt Prog	gre ss				Propo	sed Ti	meline		

COLORADOSCHOOLOFMINES

0

Bibliography

- Pickarts, M.A., Delgado-Linares, J., Brown, E., Veedu, V., Koh, C.A., 2020, *Evaluation of a Robust, In-Situ Surface Treatment for Pipeline Solids Deposition Mitigation in Flowing Systems.* Proceedings of the Offshore Technology Conference, OTC-30817-MS, Houston, TX, May 2020.
- Pickarts, M.A., Croce, D., Zerpa, L.E., Koh, C.A, 2020, Gas Hydrate Formation & Transportability during Transient Shut-In/Restart Conditions. Proceedings of the Offshore Technology Conference, OTC-30857-MS, Houston, TX, May 2020.
- Pickarts, M.A., Brown, E., Delgado-Linares, J., Blanchard, G., Veedu, V., and Koh, C.A., 2019, *Deposition Mitigation in Flowing Systems Using Coatings*. Proceedings of the Offshore Technology Conference, OTC-29380-MS, Houston, TX, May 2019. https://doi.org/10.4043/29380-MS.
- Abstract & papers: OTC conference (May 2019 (1), May 2020 (2)), NACE 2020, ICGH10 (June 2020)

BACKUP SLIDES

Project Overview

Goals and Objectives

- <u>Develop for field & commercial deployment robust pipeline</u> <u>coatings to mitigate deposition in subsea flowlines</u>
- Deposition-resistant coating system can be applied in-situ to existing (corroded) pipelines
- Larger-scale multiphase deposition flowloop evaluations in simulated field conditions
- Investigations under simulated field conditions & field test plans

29

Coating Abrasion Resistance

Taber Abrader Testing (ASTM D4060)

Poorly Adhered Coating (Mass Loss ~ 100mg/1000 cycles) DragX[™] Treatment (Mass Loss ~ 50mg/1000 cycles)

Optimized DragXTM formulation passes abrasion testing standard for internal pipeline coating materials. Typical Epoxy 70-85 mg loss/1000 cycles

Coating Durability and Adhesion

Crosscut tape test (ASTM D3359)

Knife adhesion test (ASTM D6677)

Novolac Epoxy Coated

DragX[™] Treatment

DragXTM shows no peeling, delamination or bubbling, even when subjected to direct cutting

Task 8 – In-Situ Application Method Development

- Subsea lines present unique challenges insitu
- Low temperature and high pressure compared to on shore conditions testing performed (Milestone C: In-situ Application)
 - Low temperature curing showed slightly longer cure times
 - Testing compared 1000 psi curing on a coupon to coupon cured at atmospheric
 - No change in appearance, contact angle, durability
 - Key is to measure dew point to determine cure

Pipeline Fluids, Chemicals & Solvent Compatibility of Coatings

- Flowline fluids: oil, water, brine, natural gas
- Chemicals/solvents: kerosene, xylene, JP8
- Compatibility testing up to 31 days

Initial	31 days	Initial	31 days	Initial	31 days	JP8 - Compound	Amount
JP8	JP8	Korosene	Korosene	Xylane C	Xylane C	C8-C9 aliphatic	9%
						hydrocarbons	
						C10-C14 aliphatic	65%
						hydrocarbons	
						C15-C17 aliphatic	7%
						hydrocarbons	
(Sur)	Contraction in the state of the					aromatics	18%

Technical Data

Typical Uncured Physical Properties			DragX Treatment				
Color	Clear/White/Blue		Appearance of Coating Film	Clear/White/Blue			
Specific Gravity	1.1 g/cm ³		Maximum Usable Temperature	400°F			
Application Methods	Spray, Dip, or Flood and Drain		Adhesion Test				
Viscosity	100 – 5000 c.p. (Tunable)	.p. (Tunable) (As		5A after 48 hours			
Base	Water						
VOC Content	None		Flow Assurance* (As conducted by the Colorado	Up to 10-fold reduction in Hydrate			
Shelf Life (Stored Between 50 - 80°F in	>6 months		School of Mines Center for Hydrates)	Formation/Adhesion			
unopened state)			Salt Fog Corrosion Resistance +	1000 - 1			
Niving Time			Scribing (ASTM B117 + ASTM D1654)	1000 + hr			
(Part A and Part B)	application		Erosion Resistance	< 5% Mass Loss at sand particle			
	Recommended 60 minutes between coats.		(ASTM G76)	impact of 70 m/s			
Time Between Coats			Wear Resistance (ASTM D4060)	50mg / 1000 cycles / 1 kg			
Coating Window	Additional recoats can be applied for up to 72 hours from first application/mixing of Part A and Part B		Chemical Compatibility Tested (No	Acidic Conditions (pH < 2) Alkaline Conditions (pH >11)			
Full Cure Time	Less than two hours		Reactivity)	Acid Gas ($> 1000 \text{ ppm CO}_2$)			
Coating Thickness	1-4 mils recommended			Sour Gas (> 4 ppm H_2S)			
Applicable Surfaces	Metals, concrete, composites, etc.		Surface Roughness After Application	60-120 µinch			

Transient Flowloop Experiments: Consortium Comments & Questions Addressed

	Comment/Question	Answer				
	How is wall deposit porosity calculated?	Water Volume Balance $V_{input} = V_{flow} + V_{hydrate} + V_{deposit}$				
evron	How does water wicking into deposit change with time?	Wicking decreases with penetration depth (time)*				
чэ	Is the decreasing flow a result of significant deposition on untreated surfaces?	Similar amounts of hydrate deposited in both cases, result of porous deposition				
MOX	What happens when there are multiple attempts at restart?	Performed for transient tests, 2-3 attempts before permanent plugging				
	Potential redistribution of hydrates is not captured	Possible, but difficult due to fluid warming in non-cooled sections				
me	Have you performed repeats for uncoated/ coated trials?	Yes, 8x Uncoated, 3x Coated				
Che	Try to dissociate and reform in loop to see if results are the same?	Procedure is to dissociate and reform				
Multi	May consider including brine into system (slower hydrate growth & corrosion)	Don't expect corrosion to occur, slow hydrate growth could be interesting				

Focused Towards Field Deployment

- Discussions held & will continue with Industry champions to assess site and costs for deployment
- Potential sites: North Sea (Shell, Chrysaor, Premier Oil etc), Gulf of Mexico
- Continue simulated XoM field trial pipe geometry and conditions to aid subsequent experimental design

Wax Deposition Mitigated in Oil-Dominated Systems

Cold finger tests show wax deposition reduced by up to 55%

Surface Materials Properties & Characterization

Investigating surface energy & roughness effects on hydrate formation

Surface	Dispersive Surface Energy [mJ/m2]	Polar Surface Energy [mJ/m2]	Total Surface Energy [mJ/m2]	Median Surface Roughness [µm]	
Carbon Steel	137	1.8	139	0.82	
Stainless Steel	82.2	0.41	82.61,2	1.9	
Copper	348	1.4	350 ³	0.1	
PTFE	20.8	0.3	21 .1 ⁴	0.1	
DragX	15.4	0.5	16	0.27	

Hydrate Deposition Mitigated in Oil-Dominated Systems

Flowloop transient tests show no plugs with coating (6+ mo)

Hydrate Deposition Mitigated in Oil-Dominated Systems

 Deposition Loop: Induction times delayed for oil/gasdominated (up to 230+ h); Growth reduced by ~60+%

