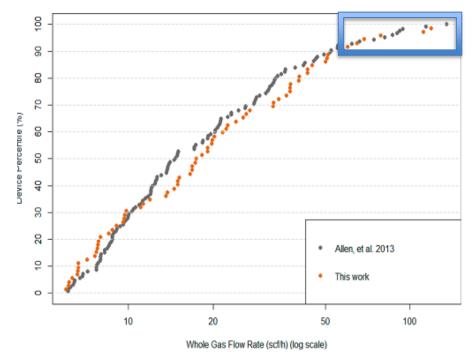
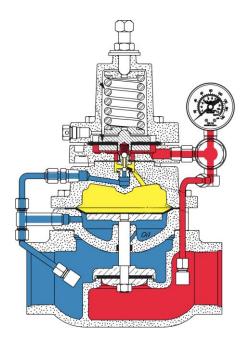
Predictive Self-Healing for Pneumatic Actuated Systems


Project Number FE0031876

Michael W. Keller^A, Rami Younis^B, Cem Sarica^B, Mahfujul Khan^A, Anna Williams^A, and Nnozuba Somto^B ^ADepartment of Mechanical Engineering ^BSchool of Petroleum Engineering The University of Tulsa

Methane Release from Damaged Systems

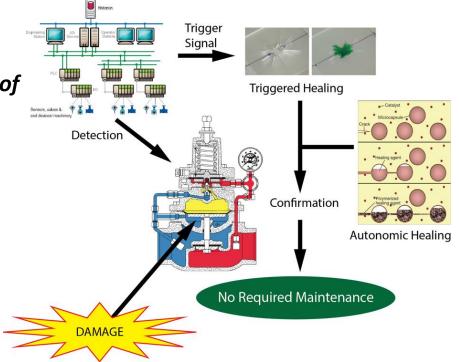
- Allen et al.* observed a significant number of anomalous methane releases in pneumatic actuators.
- This project targets 80% reduction of leak rate in those damaged systems.
- Release from damaged systems in the Allen study accounted for 14 million cubic feet of methane/year.
- Milestone goal would reflect a reduction in release by 11 million cubic feet/year for the systems in Allen paper.



* Allen, Pasci, Sullivan, et al. *Environ. Sci.* Technol. **49** (2015)

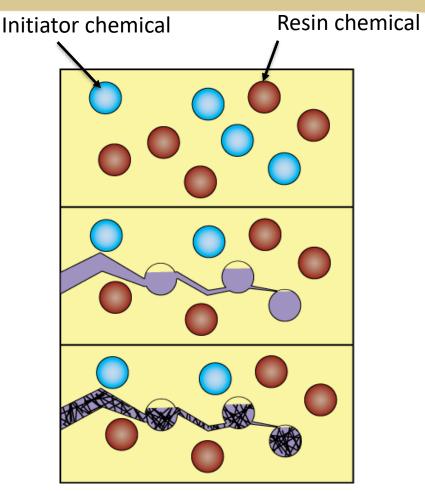
Pneumatic Controllers/Actuators

- Various models, but diaphragms are in large number of devices
- Damage can lead to direct venting of natural gas
- Proposed approach is intended to be direct retrofit
- Approach allows for "active" repair
 - Increases healing approach scope
 - Enables repair of large scale damage

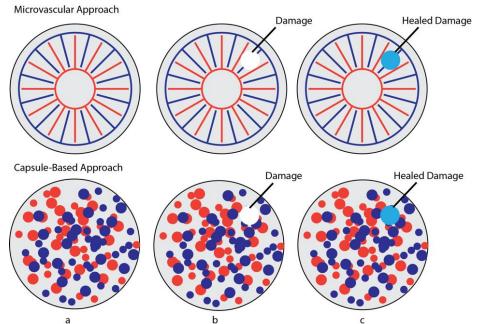


Self-Healing Diaphragm

Demonstrate automatic detection and repair of a pneumatic actuator in a pilot scale facility

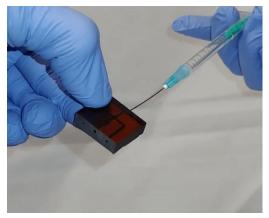

- Synthesize self-healing system
- Develop detection model
- Build and validate pilot scale test stand

Synthesize Self-Healing Membrane


- Synthesize self-healing membrane material
- Confirm self-repair in laboratory setting
- Integrate system into commercial pneumatic actuator (PA)
- Confirm self-repair in commercial PA.

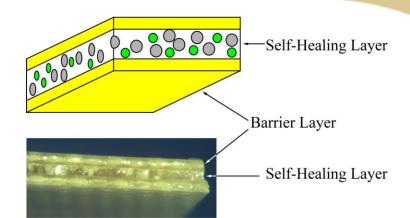
Membrane Processing/Synthesis

- Two approaches
 - Capsule-based repair
 - Microvascular networks
- Initial focus is polyurethane membrane systems
- Siloxane or acrylic-based healing chemistries are initial targets

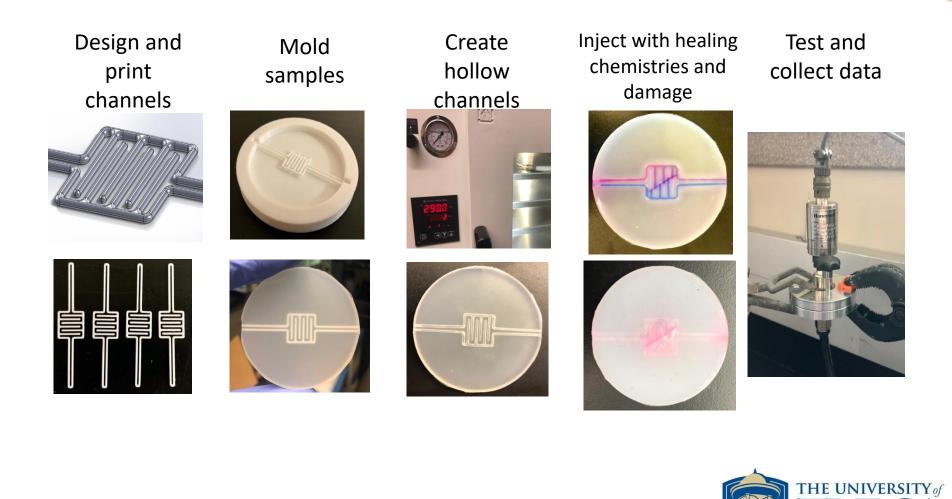


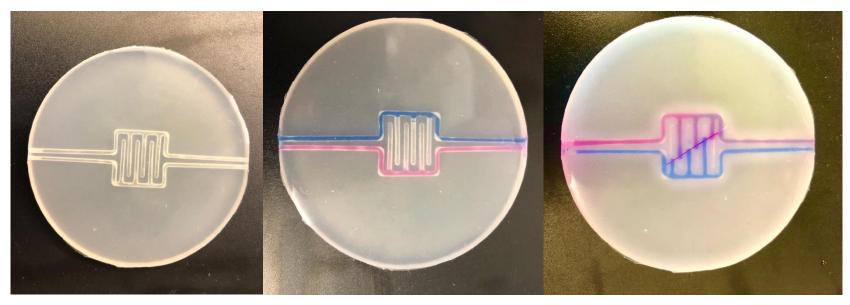
Microvascular Systems

- Based on depolymerization of PLA or other lost-wax approaches
- Channel positive is printed via rapid prototype
- Membrane is cast around positive
- Channels are evacuated to provide circulatory system
- Healing chemistry is circulated in channels
- Monolithic and multilayered systems will be investigated



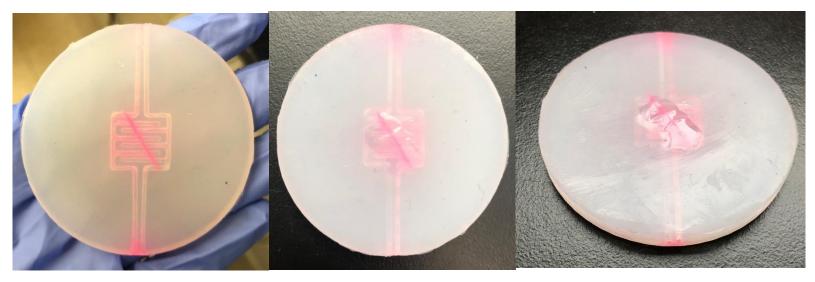
Capsule-based approaches


- Based on reactive monomer encapsulation
- Effective for small-scale damage
- Could be combined with microvascular approach for multi-scale repair
- Monolithic and multi-layer systems will be perused



Microvascular Manufacturing

Initial Microvascular Material


Beginning Specimen

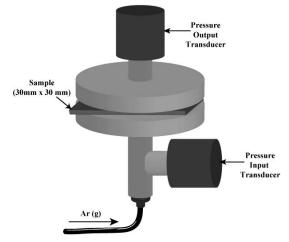
Injecting Dye (Air trapped)

Cut on surface

Preliminary healing demonstration

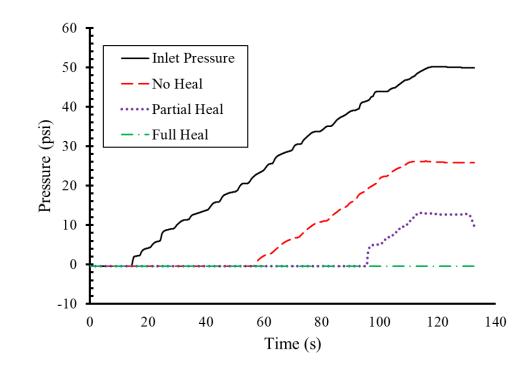
Cut on surface

Injecting Healing chemistry

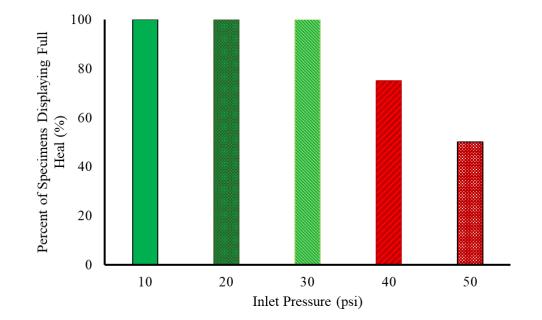

Healing completed

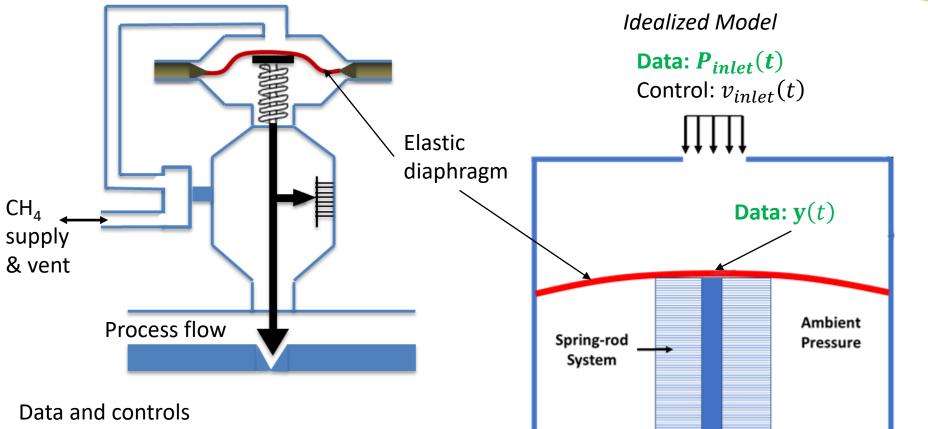
Healing Assessment

- Pressure test for leak
- Go/no-go healing determination
- Pre-damaged and pre-healed specimens



Test Results


- Leak initiation indicates failure of healed damage
- Healing effectiveness currently based on 100% repair


Inlet Pressure Effect on Healing

- Low inlet pressure improves healing
- 60% of
 specimens
 healed when
 exposed to max
 inlet pressure

Data & computation detection system

- Inlet pressure and rate vs time
- Level meter setting
- Process flow

Numerical simulation system

$$\rho \frac{\partial u}{\partial t} - \nabla \cdot [-pI + \mu(\nabla u + \nabla^{T} u)] + \rho(u - u_{m}) \cdot \nabla u = F$$

$$-\nabla \cdot u = 0 \quad \text{in } \Omega^{f} \times (0, T)$$

$$u(x, 0) = u_{0} \quad \text{on } \Omega^{f} \times (0, T)$$

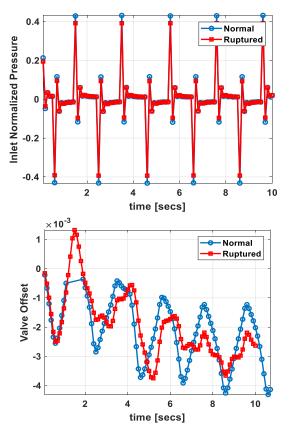
$$u(x, 0) = u_{0} \quad \text{on } \Omega^{f} \times (0, T)$$

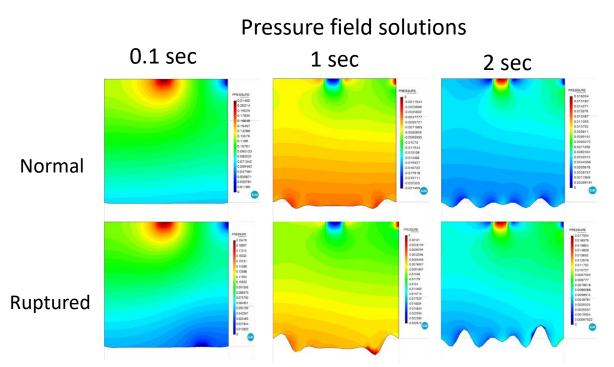
$$\sigma^{f} \cdot u^{f} = t^{f} \quad \text{on } \Gamma_{N}^{f} \times (0, T)$$

$$\rho = \nabla \cdot (FS^{s}) + \rho_{s} b^{s} \text{ in } \Omega^{s} \times (0, T)$$

$$v(x, 0) = v_{0} \text{ in } \Omega^{s} \times \{0\}$$

$$\frac{\partial v}{\partial t} = v_{0} \text{ in } \Omega^{s} \times \{0\}$$


$$v = v_{0} \text{ in } \Gamma_{N}^{f} \times (0, T)$$


$$\sigma^{s} \cdot u^{s} = t^{s} \text{ on } \Gamma_{N}^{f} \times (0, T)$$

$$\rho = rOAM$$

Validation & robustness

Applied extreme valve cycling to a prototypical case. Introduced rupture at 1 sec.

17

Simulated sampling of dimensionless parameter space

Scaling analysis produces:

- 3 dimensionless groups with design parameters
- 2 groups pertaining to controls and state variables

Ongoing work:

- Sample parameter space
- Identify statistically reliable correlation indicating damage
- Apply to test-stand
- Apply to flow-loop

Accomplisments/Summary

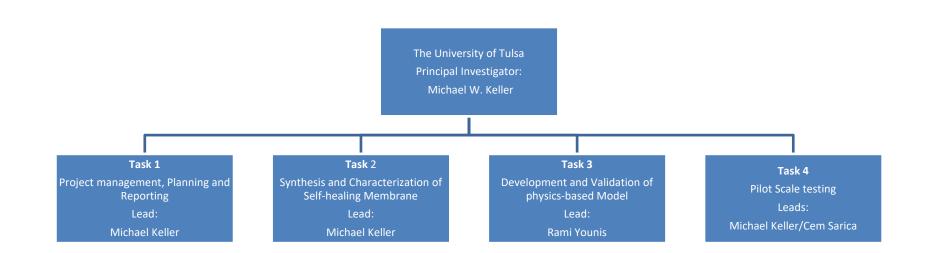
- Demonstrated the ability to heal diaphragm materials with microvascular networks
- Initial physical model developed to inform health monitoring
- Moving toward implementation in commercial system

Lessons Learned

- Research gaps/Challenges
 - None at this time
- Unanticipated Research Difficulties
 - Removal of the PLA preform from elastomers was more complicated than in epoxies.
- Technical Disappointments
 - None at this time
- Changes that should be made next time
 - None at this time

Benefit to the Program

- Reduction of methane release by at least 80%.
- Currently there is no automated repair approach for that is available for pneumatically actuated valves. Additionally, the integrated leak detection approaches are also not well developed and represent a significant advancement in current SCADA technology in its own right. Furthermore, the large-volume self-healing approaches have not been demonstrated in a system that would allow for autonomous or automatic initiation of the healing. Successful demonstration of this integrated system would also represent a forward advancement in the general area of self-healing materials and structures. Finally, the successful demonstration of an integrated self-healing valve system would advance the goal of reduced methane emissions due to damaged or malfunctioning pneumatically actuated valve and control systems.



Project Overview Goals and Objectives

- Demonstrate the ability to automatically repair pneumatic controllers from a wide range of damage.
- Develop appropriate SCADA-based real-time monitoring tools to identify a damaged pneumatic controller
- Develop appropriate SCADA-based tools to determine if self-repair was effective.
- Provide technoeconomic analysis of the proposed system.
- Demonstrate the system in a pilot scale flow loop.

Project Organizational Chart

Gantt Chart

WBS	Task/Subtask/Milestone	G/N	Start	End	Quarters									
W BS		G/N			1	2	3	45	6	7	89	10	11 1	12
1	Project management and Planning		0	1										
1.1	Revise PMP		0	1										
M1.1.1	Submit Revised PMP		1	1	-									
1.2	Technology Maturation Plan		0	1										
M1.2.1	Submit technology maturation plan		1	1	-									
2	Demonstrate Self-healing of Diaphragm		0	8										
2.1	Assess self-healing using model system		0	4										
M2.1	Complete testing of self-healing diaphragm and controls for at least 1 self-healing system.	G/N	4	4				٠.						
2.2	Demonstrate self-healing in pneumatic controller		2	8										
M2.2	Demonstrate reduction of leak rate by at least 80% compared to a non-healing control	G/N	8	8							٠			
3	Demonstrate SCADA-based analytics		0	12									-	
3.1	Develop Physics-based model		0	8										
M3.1	Demonstrate physics model with sufficient fidelity to detect a 10 scf/h leak		8	8										
3.2	Demonstrate leak detection on test stand		6	12									-	
M3.2	Demonstrate the ability to detect a leak rate of at least 10 scf/h		12	12										A
4	Assess self-healing and SCADA detection in pilot loop		5	12									-	
4.1	Construct test stand in pilot loop		5	10										
M4.1	Construct and validate pilot scale test stand		10	10								4		
4.2	Demonstrate leak detection via SCADA in pilot plant		5	12									-	
M4.2	Demonstrate the ability to detect a leak rate of at least 10 scf/h	G/N	12	12										•
4.3	Demonstrate self-healing in pilot plant		5	12									-	
M4.3	Demonstrate the ability to reduce the leak rate by 80% under simulated operating conditions.	G/N	12	12										•

- List peer reviewed publications generated from the project per the format of the examples below.
 - None to report

