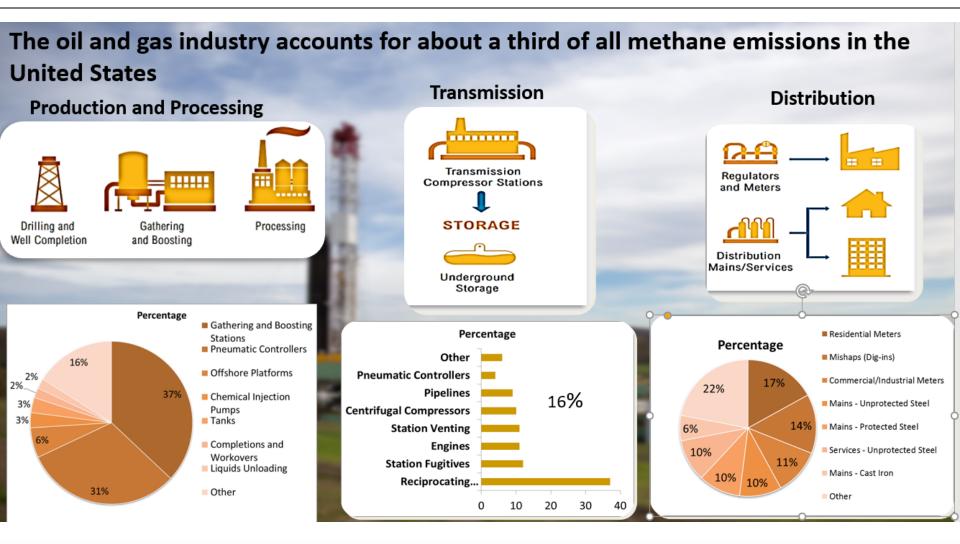


Low-cost Retrofit Kit for Integral Reciprocating Compressors to Reduce Emissions and Enhance Efficiency

Pejman Kazempoor, Ph.D. School of Aerospace and Mechanical Engineering University of Oklahoma


Mid Continental Rentals

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Presentation Outline

- Technical Status
- Accomplishments to Date
- Lessons Learned
- Project Summary

Emissions from O&G Production and Distribution Facilities

Problem Statement

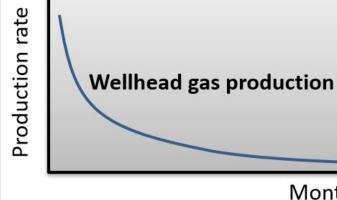
EMISSIONS OVERVIEW

Requirement to meet the emissions standards at various operating conditions

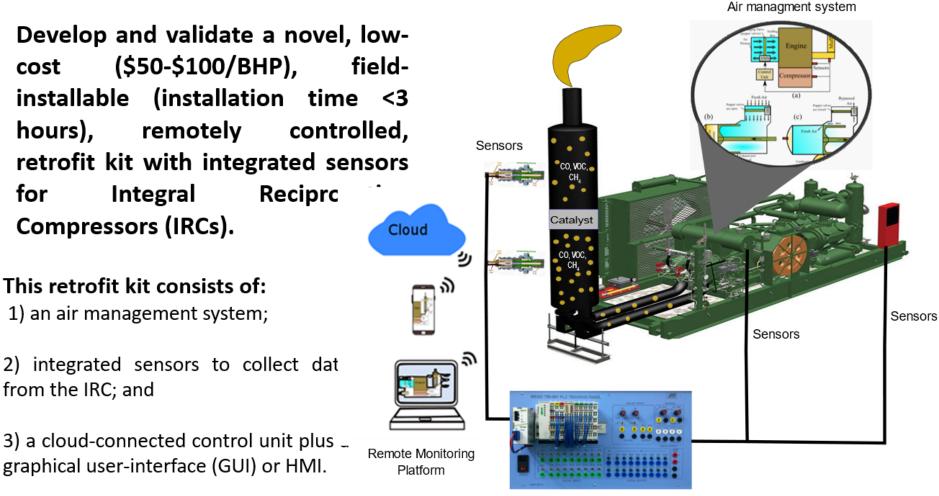
Month

Operational Limits

The majority of large industrial NG engines are designed to optimally work at their rated load and speed

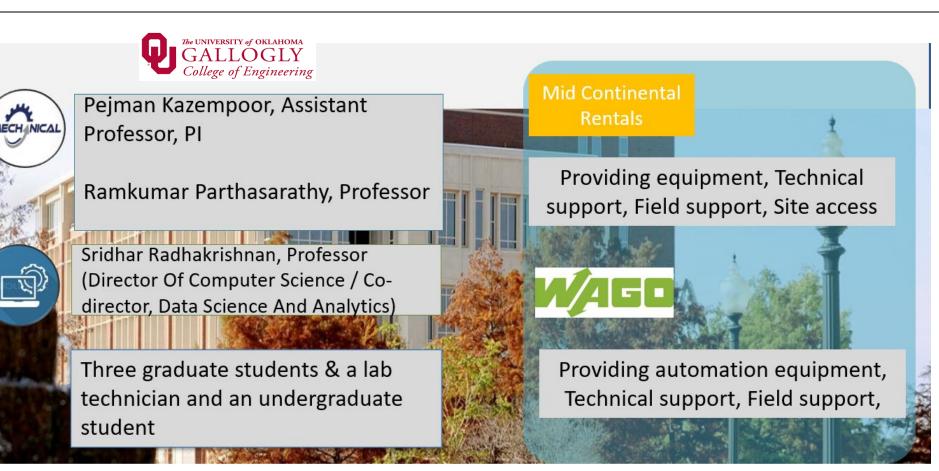


VOC and Methane Emissions


Unburnt HC emissions generally at part load scenarios.

Regulations

Regulation on exhaust emissions require stricter control of RC engines operation especially at low loads



Project Objectives

Automation system

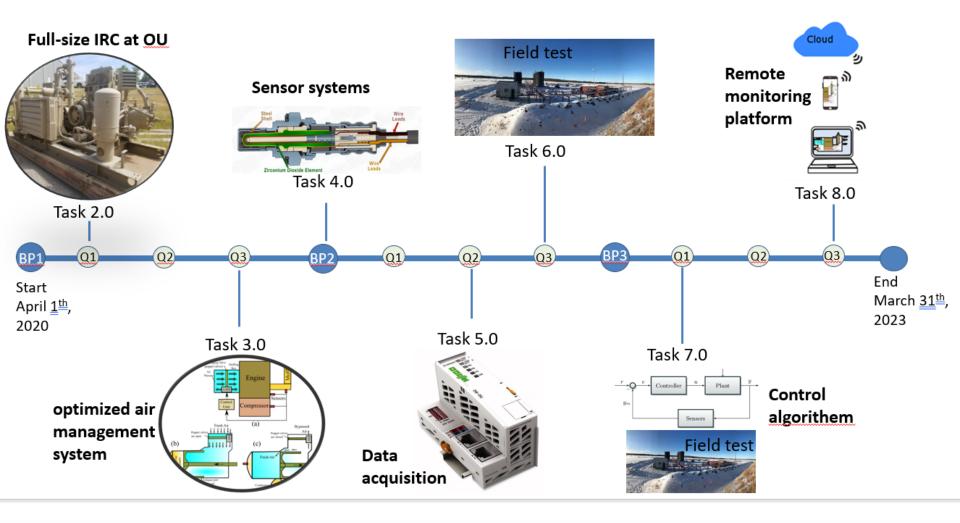
Project Team & Partners

Tasks- Summary

BUDGET PERIOD 1

- Task 1.0 Project Management and Planning
- Task 2.0 Installation of a full-size IRC at OU
- Task 3.0 Cost-effective and optimized air management system
- Task 4.0 -Down-selection of the sensor systems (sensor+ sample line+ filtration)

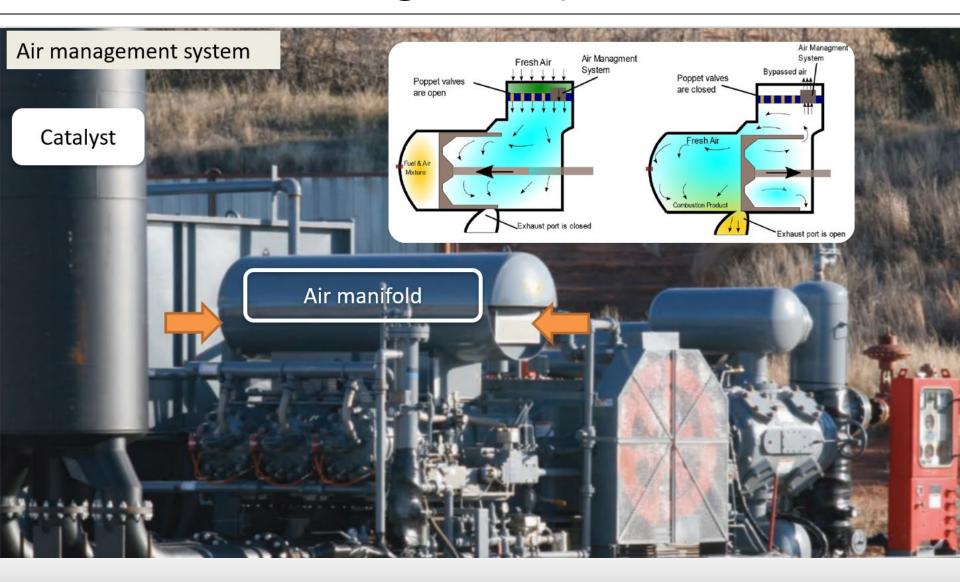
BUDGET PERIOD 2


- Task 5.0 –Integration of sensors and data acquisition
- Task 6.0 The first field deployment of the data acquisition system
- Task 7.0 Feedback control algorithm to manage AMS

BUDGET PERIOD 3

- Task 8.0 Predictive and preventive maintenance platform
- Task 9.0 Final product at a field

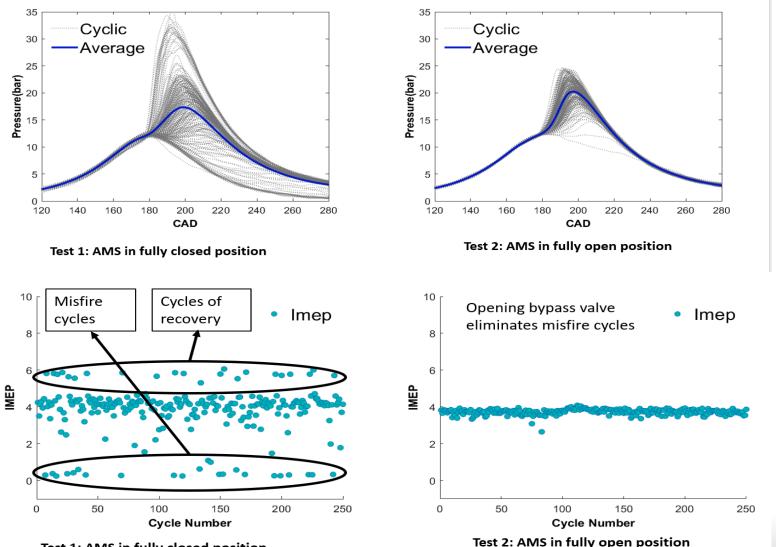
Project Schedule – 2020-2023


Accomplishments to Date

Task 2: Installation of a full-size IRC at OU

Task 3.0 – Cost-effective and optimized air management system

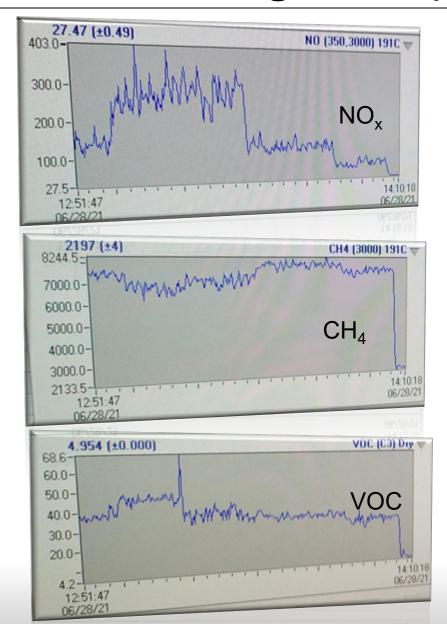
Task 3.0 – Cost-effective and optimized air management system

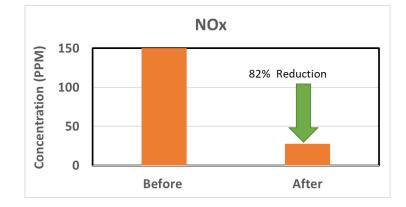

A new AMS system is designed, developed and manufactured that can be easily be integrated with different IRCs. This retrofit solution can significantly increase the IRC performance parameters

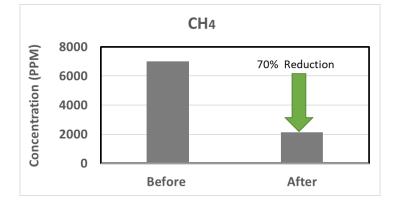
Air management system (AMS)

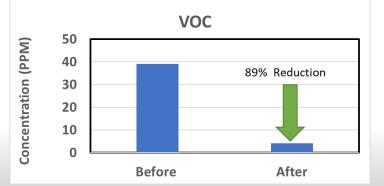
Task 3.0 – Cost-effective and optimized air management system

Task 3.0 – Cost-effective and optimized air management system-Test results




Test 1: AMS in fully closed position

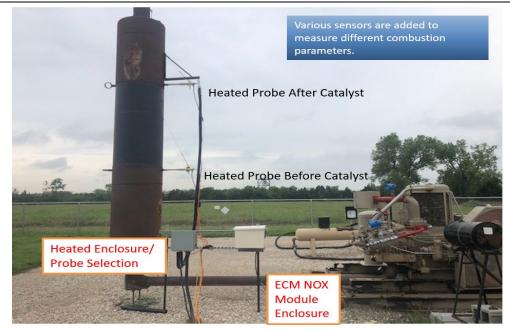

14


Task 3.0 – Cost-effective and optimized air

management system-Test results

15

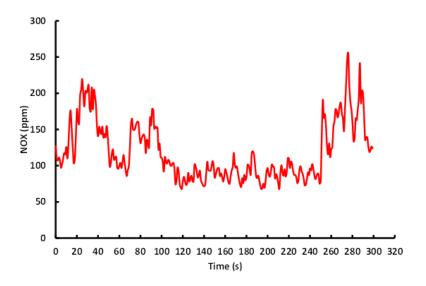
Task 4.0 -Down-selection of the sensors (sensor+ sample line+ filtration)

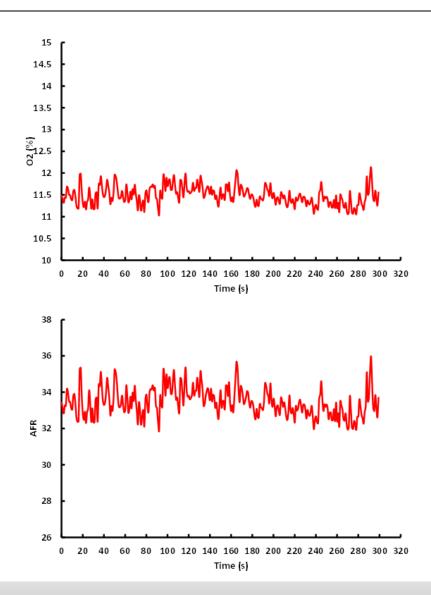


Indicator Port Engine Pressure

Indicator Port 2nd Stage Compressor Pressure

Indicator Port 1st Stage Compressor Pressure





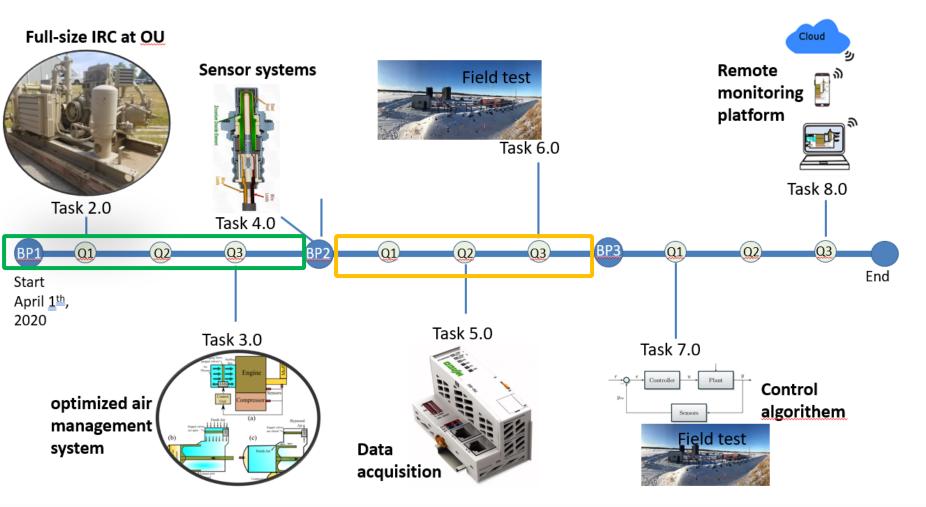
Task 4.0 -Down-selection of the sensors (sensor+ sample line+ filtration)

NOx(ppm)O2 (%)AFRMin6811.031.9Max25612.136.0AVG11911.533.4

Emission results (ECM)

Summary of milestones and updated completion dates

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Actual Completion Date	Verification method	Comments
Task 1	Project management plan	Duration of project	ongoing	PMP file	None
Task 2	IRC at OU site is fully functional	06/30/2020	Completed	Lab test verification, report	Finished July 13, 2020
Task 3	Manually operated AMS reduces the IRC emissions (methane, CO, VOCs) to the standard level at partial loads (loads >40% and Speed >300 rpm).	12/31/2020 (Has changed)	ongoing	Lab test verification, report	11/30/2021
Task 4	The sensors system selected are all suitable to work under harsh two-stroke operation	03/31/2021	ongoing	Lab test verification, report	05/03/2021


Lessons Learned

- Open space laboratory assists the development process of new technology. However, it brings some challenges and limitations.
- The new air management system developed can effectively enhance the engine operation and emissions. Additional tests should be performed to validate the concept at all operating conditions.
- The AMS should also be equipped with smart algorithms that can effectively manage the technology performance (BP2).
- Various technical challenges should be resolved to generalize the concept and used it for other IRC sizes.

Project Summary

- A comprehensive test facility has been established at OU. The facility comprises a full-size IRC, state-of-the-art performance and emissions measurement tools and devices.
- A cost-effective, field-installable technology is designed and manufactured to manage the IRC performance and emissions at various load and speeds
- Sensors for automation and remote monitoring of IRC are selected and tested. Steady-state data has been recorded.
- An automation system is under development.
- Field tests will be conducted in BP2.

Project Summary-Next Steps

Acknowledgment

- DOE project Manager (Joseph Renk)
- Mid Continental Rentals
- WAGO Automation
- Windrock Inc.

Appendix

- -Benefit to the Program
- -Project Overview
- **–Organization Chart**
- -Gantt Chart
- -Project Schedule

Benefit to the Program

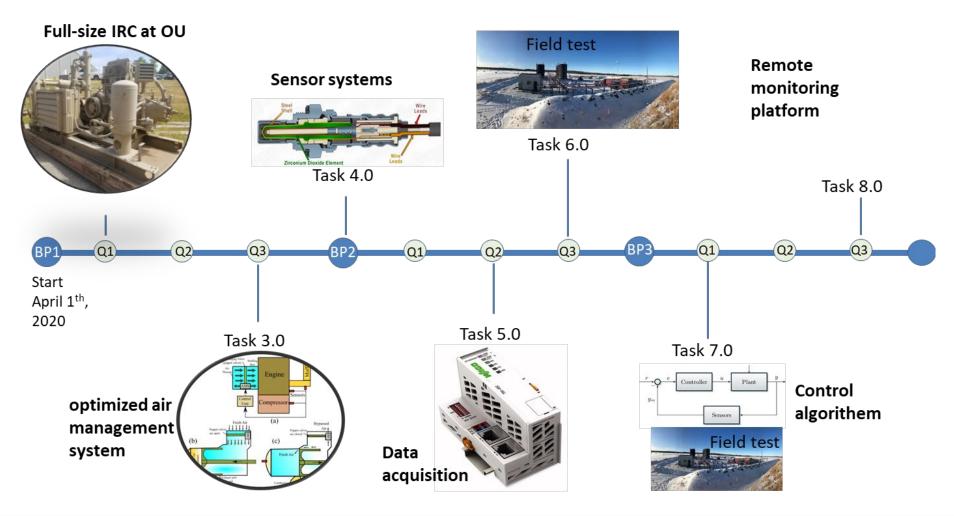
• Aligned with the program objectives, the research team proposes to develop a novel, low-cost, field-installable, remotely controlled retrofit kit with integrated sensors for Integral Reciprocating Compressors. This integrated solution improves operating efficiencies and significantly reduces emissions of IRCs used in different sections of the natural gas industry.

Project Overview

Goals and Objectives

- The objective is to develop and validate a novel, low-cost, field-installable, remotely controlled, retrofit kit with integrated sensors for Integral Reciprocating Compressors (IRCs) used in production, gathering, transmission, and processing sections of the natural gas industry.
- The proposed technology helps to reduce emissions and improves operating efficiencies, combustion stability, and operational envelope of IRCs.
- This retrofit kit consists of 1) an air management system; 2) integrated sensors to collect data from the IRC; and 3) a cloud-connected control unit plus a graphical user-interface (GUI) or HMI.
- Since the parameters measured to control the AMS constitute true evidence of the IRC's healthy operation, the cloud-connected feature facilitates remote monitoring of the IRC for preventative and predictive maintenance as an additional benefit to operators.

Organization Chart



College of Engineering

Gantt Chart

		4/1 -6/30	7/1-9/30	10/1-12/31	1/1-3/31	4/1-6/30	7/1-9/30	10/1-12/31	1/1-3/31	4/1 -6/30	7/1-9/30	10/1-12/31	1/1-3/31	4/1-6/30
	Assigned Resources	Year 1			Ext.	Year 2				Year 3				
Task Name		Qtr 1	Qtr 2	Otr 3	Qtr 4	Q5	Qtr 1	Qtr 2	Otr 3	Qtr 4	Qtr 1	Qtr 2	Otr 3	Qtr 4
Task 1.0 - Project Management and Planning														
Subtask 1.1 – Project Management Plan														
Subtask 1.2 – Technology Maturation Plan														
Task 2.0 – Installation of a full-size IRC at OU														
Task 3.0 – Cost-effective and optimized air management system Task 4.0 –Down-selection of the sensor systems														
(sensor+ sample line+ filtration)														
Task 4.1- Sensors selection														
Task 4.2- Sensors system design														
Task 4.3- Physics-based model for O2 and NOx sensors														
Task 5.0 –Sensors integration and data acquisition														
Task 5.1- Integration of the sensors to a full-size IRC at OU														
Task 5.2- PLC programming and setup														
Task 5.3- Power unit for the automation system														
Task 6.0 – The first field deployment of the data acquisition system														
Task 6.1- Establish the platform for remote transferring the data														
Task 6.1. Site selection														
Task 6.2. Data acquisition system integration and data transfer														
Task 7.0 – Feedback control algorithm to manage AMS														
Task 7.1- Data collection from the full-size IRC at OU														
Task 7.2- Finding correlations between IRC's operational														
parameters and sensors data														
Task 7.3- Feedback control algorithm														
Task 7.4- Test the entire automation system														
Task 8.0 – Predictive and preventive maintenance platform														
Task 9.0 – Final product at a field														27

Project Schedule

