Methane Mitigator – Development of a Scalable Vent Mitigation Strategy to Simultaneously Reduce Methane Emissions and Fuel Consumption from the Compression Industry

PI: Derek Johnson, PhD, PE Co-PIs: Drs. Andrew Nix and Nigel Clark

Project Team

WVU – Team – 3 faculty, 4 GRAs, Postdoc

TAP –

- WVU
- CAT
- Bryan Marlow Ariel
- Tracey Footer ERG
- Nathan Fowler Cenergy
- Richard Atkinson

Project Goal

Project Goal: Develop a stand-alone vent mitigation system and fuel delivery control system capable consuming transient vent gas emissions in well site engines to reduce GHG and other pollutants.

Focusing on well site components: compressor engine crankcases, seals/vents, pneumatic vent manifolds, produced water and condensate tanks

Literature Summary

PCs

Sources

- Engine crankcases
 - Vary with engine load and age
 - Short term steady
 - Inerts, oil vapor, and methane
 - \circ ~1 SCFM of CH₄

Compressor vents

- Vary with load and age
- Short term steady
- Gas with oil vapor
- \circ ~ 4.3 SCFM of CH₄

- GPUs collocated
- Short term variable
 - Stovern, et al. 4.9 PC per well
 - CPC up to 9.9 SCFH (time average)
 - IPC 0.1 up to 31.3 SCFH (time average)
 - Luck, et al. 0.2 SCFM (time average)
 - Peak rates up to 200 SCFH (3 SCFM) (instantaneous emissions for actuations)

Tanks

- Variable composition high VOCs
- Short term variable
- Variable based on gas,
 - condensate and water production
- \circ ~13.7 SCFM CH₄ time average

Engine Crankcases and Compressor Vents

- Full Flow Sampler
- Vehicle mounted system as in other ONG audits
- Excessive dilution laser based , 4 gas analysis
- Samples GilAir
 - Class 1 Div. 1 sampler to fill 10L Tedlar bags – dilute and raw

Long Term

- Centrally located, solar powered DAQ trailer – safe perimeter location
- Uses in-house Scimitar
- Auto-record

 1-4 hr files
- Beagle bone platform
- Cellular notifications
- SD card storage

Solar panels

PCs

- 6 250 SLPM Whisper MFM
 - Low pressure drop for atmospheric vents
- 2 50 SLPM Whisper MFM
 o Lower flows
- Class 1 Div. 2
- Sealed 50' cables to DAQ trailer
- 1-10 Hz serial com recorded

Tanks

- 1 Kurz 2" thermal based
 - Low pressure drop
 - Up to 250 SCFM methane
- 1 2" LFE viscosity based
 - Low pressure drop
 - Up to 100 SCFM air
- 1 4" LFE viscosity based
 - Low pressure drop 0
 - Up to 400 SCFM air
- 1 6" LFE viscosity based
 - Low pressure drop
 - Up to 1000 SCFM air

Sensors for LFEs

- 1 Intrinsically safe DP
 - 0-10"
 - 4-20 mA
- 1 Intrinsically safe DP
 - o **0-1**"
 - 4-20 mA
- 1 K-Type TC
 - Isolation barrier for IS

Modeling Summary

Basic Model

- CAT G3508J
 - 1200 RPM
- Inputs
 - Engine load
 - # of GPUs per site
 - Compositions
 - □ C1-C9, CO₂, CO, O₂, N₂
- Modeling goals
 - Assess various potential scenarios
 - Aid in the development of the methane mitigator, its control, and buffer/processing
 - A tool to assess various site/engine/designs

Modeling Summary

- Sub models
 - Engine
 - CC, CV, PCs,
 Tanks
- Captured Stream

 Temporally
 .
 - varying parameters
 - Fuel flow rate
 - Capture flow rate
 - MN and HV

Example Sub-Model for 2 GPU Site

Modeling Summary

Total Capture Stream Properties

Methane Number

- o ASTM
- ISO H/C
- ISO linear
 check
- Total volume

 Relative fuel
 percentage
 P, T

Equipment and Laboratory Update

Engine Equipment

- CAT G3508J
 - 1200 RPM for gen
- SR4 500 kW generator
- Cooling Skid SCAC
 - o Remote
 - **50 HP WEG**
 - o VFD
- Simplex Mars 700kW load bank
- 8" LFE intake flow
- Bacharach gas monitoring for safety

Thank you!!!

PI: Derek Johnson, PhD, PE Associate Professor Mechanical and Aerospace Engineering West Virginia University Derek.johnson@mail.wvu.edu Co-PI: Andrew Nix, PhD Associate Professor Mechanical and Aerospace Engineering West Virginia University <u>Andrew.Nix@mail.wvu.edu</u>

Co-PI: Nigel Clark, PhD Professor and George Berry Chair, Emeritus Mechanical and Aerospace Engineering West Virginia University <u>Nigel.Clark@mail.wvu.edu</u>

