Methane Mitigator – Development of a Scalable Vent Mitigation Strategy to Simultaneously Reduce Methane Emissions and Fuel Consumption from the Compression Industry

PI: Derek Johnson, PhD, PE
Co-PIs: Drs. Andrew Nix and Nigel Clark

DE-FE0031865
Project Team

WVU – Team – 3 faculty, 4 GRAs, Post-doc

TAP –
- WVU
- CAT
- Bryan Marlow – Ariel
- Tracey Footer – ERG
- Nathan Fowler – Cenergy
- Richard Atkinson
Project Goal: Develop a stand-alone vent mitigation system and fuel delivery control system capable consuming transient vent gas emissions in well site engines to reduce GHG and other pollutants.

Focusing on well site components: compressor engine crankcases, seals/vents, pneumatic vent manifolds, produced water and condensate tanks.
Literature Summary

Sources

- **Engine crankcases**
 - Vary with engine load and age
 - Short term steady
 - Inerts, oil vapor, and methane
 - ~1 SCFM of CH$_4$

- **Compressor vents**
 - Vary with load and age
 - Short term steady
 - Gas with oil vapor
 - ~4.3 SCFM of CH$_4$

- **PCs**
 - GPUs – collocated
 - Short term variable
 - Stovern, et al. - 4.9 PC per well
 - CPC up to 9.9 SCFH (time average)
 - IPC 0.1 up to 31.3 SCFH (time average)
 - Luck, et al. - 0.2 SCFM (time average)
 - Peak rates up to 200 SCFH (3 SCFM) (instantaneous emissions for actuations)

- **Tanks**
 - Variable composition – high VOCs
 - Short term variable
 - Variable based on gas, condensate and water production
 - ~13.7 SCFM CH$_4$ – time average
Engine Crankcases and Compressor Vents

- Full Flow Sampler
- Vehicle mounted system as in other ONG audits
- Excessive dilution – laser based, 4 gas analysis
- Samples – GilAir
 - Class 1 Div. 1 sampler to fill 10L Tedlar bags – dilute and raw
Field Equipment Update

Long Term
- Centrally located, solar powered DAQ trailer – safe perimeter location
- Uses in-house Scimitar
- Auto-record
 - 1-4 hr files
- Beagle bone platform
- Cellular notifications
- SD card storage
Field Equipment Update

PCs
• 6 – 250 SLPM Whisper MFM
 o Low pressure drop for atmospheric vents
• 2 – 50 SLPM Whisper MFM
 o Lower flows
• Class 1 Div. 2
• Sealed 50’ cables to DAQ trailer
• 1-10 Hz – serial com recorded
Tanks
- 1 – Kurz 2” thermal based
 - Low pressure drop
 - Up to 250 SCFM methane
- 1 – 2” LFE viscosity based
 - Low pressure drop
 - Up to 100 SCFM air
- 1 – 4” LFE viscosity based
 - Low pressure drop
 - Up to 400 SCFM air
- 1 – 6” LFE viscosity based
 - Low pressure drop
 - Up to 1000 SCFM air

Sensors for LFEs
- 1 – Intrinsically safe DP
 - 0-10”
 - 4-20 mA
- 1 – Intrinsically safe DP
 - 0-1”
 - 4-20 mA
- 1 – K-Type TC
 - Isolation barrier for IS
Basic Model

- CAT G3508J
 - 1200 RPM

- Inputs
 - Engine load
 - # of GPUs per site
 - Compositions
 - C1-C9, CO₂, CO, O₂, N₂

- Modeling goals
 - Assess various potential scenarios
 - Aid in the development of the methane mitigator, its control, and buffer/processing
 - A tool to assess various site/engine/designs
Modeling Summary

- Sub models
 - Engine
 - CC, CV, PCs, Tanks
- Captured Stream
 - Temporally varying parameters
 - Fuel flow rate
 - Capture flow rate
 - MN and HV

Example Sub-Model for 2 GPU Site
Modeling Summary

- **Methane Number**
 - ASTM
 - ISO H/C
 - ISO linear check

- **Total volume**
 - Relative fuel percentage
 - P, T

Total Capture Stream Properties
Engine Equipment

- CAT G3508J
 - 1200 RPM for gen
- SR4 500 kW generator
- Cooling Skid – SCAC
 - Remote
 - 50 HP WEG
 - VFD
- Simplex Mars 700kW load bank
- 8” LFE – intake flow
- Bacharach gas monitoring for safety
Thank you!!!

PI: Derek Johnson, PhD, PE
Associate Professor
Mechanical and Aerospace Engineering
West Virginia University
Derek.johnson@mail.wvu.edu

Co-PI: Andrew Nix, PhD
Associate Professor
Mechanical and Aerospace Engineering
West Virginia University
Andrew.Nix@mail.wvu.edu

Co-PI: Nigel Clark, PhD
Professor and George Berry Chair, Emeritus
Mechanical and Aerospace Engineering
West Virginia University
Nigel.Clark@mail.wvu.edu