

Microwave Catalysis for Process Intensified Modular Production of Carbon Nanomaterials from Natural Gas

DOE Project Number DE-FE-0031866

John Hu (PI)

West Virginia University

Partner Institutes:

Pacific Northwest National Laboratory North Carolina State University H-Quest Vanguard, Inc. C4-MCP SolCalGas

U.S. Department of Energy

National Energy Technology Laboratory 2021 Carbon Management and Oil and Gas Research Project Review Meeting August 2021

Presentation Outline

- Project Overview
- Background and Approach
- Technical Accomplishments
- Summary and Future Work

Associated Gas Flaring Factsheet: 2018 BAKKEN

Reporting	Total Annual Flared Volume (MMCF)Total Annual CO2 Emissions (MM tonne)		Estimated Number	Estimated Number
Agency			of Flared Wells	of Operators
NDIC	63,329	5.23	11,982	NA

 Total Annual CO₂ Emissions were calculated assuming complete combustion of flared gas volumes at STP conditions (0°C/1 atm) using the average gas composition shown below

Average Natural Gas Composition by Mol %

Play/Basin	C1	C2	С3	C4	H ₂ S	CO,	Ν,	Не	Other	
Bakken	52.7%	24.6%	12.9%	1.3%	3.8%	2.8%	0.0%	0.4%	1.6%	

 Data for the average gas composition of a flare was acquired from an Eagle Ford Shale Oil Report¹ and is calculated from an unknown number of samples

Average Flaring Volume Per Flare (MCFD)

2018	Yearly			• Flaring values are reported on a monthly basis per well and													
27	' .4			in	clude op	erationa	l flaring o	days									
1 st	Half	2 nd	 Values were totaled and then averaged per month, p 														
25	5.6	29).2	quarter, bi-annually, and yearly													
a	1	с	12	c	13	c	24										
23	8.9	27	7.3	27	7.9	30).5										
January	February	March	April	May	June	July	August	September	October	November	December						
24.5	24.9	22.4	26.8	29.8	25.2	26.3	27.3	30.1	31.4	30.7	29.3						

- Data was acquired from the North Dakota Industrial Commission and then characterized for flaring volume calculations²
 - Daily flaring volumes were calculated using provided reporting information and then averaged based on a chronological period.

INTERNAL USE ONLY -

NATIONAL ENERGY TECHNOLOGY LABORATORY

2018 Bakken Flaring Report Results

Flare Size (MCFD)	Flare Units	Total Volume (MCFD)
<=100	3,781	99,761
100-200	753	109,036
200-300	442	109,508
300-400	280	96,755
400-500	206	92,716
500-600	149	81,686
600-700	140	91,261
700-800	98	73,091
800-900	83	70,739
900-1,000	58	54,669

- Monthly reports include flared volume in MCF (1000 ft³), operational days, location, and producing field information for each **individual flare**.
- Daily flaring volumes were calculated by dividing the reported monthly flared volume in MCF by the number of operational days to estimate MCFD
- Flare Units represent the number of flaring reports in the year 2018 that fell into the respective bin value.
- The Total Volume represents the total volume of flared gas for all units within each size category.

FOR PUBLIC RELEASE 2: North Dakota Industrial Commission, Oil and Gas Division, General Statistics https://www.dmr.nd.gov/oilgas/statis/statisticsvw.asp

Background-The Need

The Issue of Flaring Gas

Shale Gas Exploration

Wellhead Equipment (Bakken, ND)

Natural gas flaring, venting up in Texas

Project Overview Goals and Objectives

The objective of the project is to develop a novel, low-cost process intensified modular process to directly convert flare gas or stranded gas to carbon nanomaterials and co-product hydrogen (H_2) with high conversion, selectivity, and stability. The proposed project is based on a patented technology for one-step conversion of natural gas to carbon nanotubes (CNTs) and carbon fibers (CNFs) without emitting carbon dioxide:

 $CH_4 \rightarrow H_2 + C$ (CNT, Carbon Fibers)

Major focus:

- Process intensification at modular scales with the objective of deployment at flare gas location.
- Demonstrate the modular unit operation having a large turndown ratio which can operate under varying feed rate and composition.

Project Overview Outcomes and Deliverables

Electromagnetic sensitive catalyst development, synthesis, scale up.
Microwave pilot reactor design and performance test at capacity of 2-5 kg/day.

Modular component design, fabrication and pilot test for 100 hours
Commercial design flowsheet, Technoeconomic analysis.
Technology-to-market strategy, plan, and commercialization.

Benefit to the Program

Scientific and Technical Impact

The project advance both basic and applied fossil energy research. Understanding the reaction mechanism at interface of catalyst-methane molecule under microwave irradiation is important for basic fossil energy research.

Economic Impact

In the stranded gas location where pipeline is not available, distributed production and shipping solid carbon by truck and rail are an economically feasible. CNTs/CNFs are high-value products used as composite, fibers, electrode for electric arc steelmaking (needle coke replacement), polymers, plastics, and batteries.

Environmental Impact

Different from gas combustion for electricity generation, microwave pyrolysis creates much less CO_2 and pollutants by converting carbon in the natural gas into solid carbons. It reduces the volume of flared gas.

Organization Chart

Technical Status

Approach-Microwave Catalytic Process

The development of process intensified modular systems provides a route for the direct conversion of flaring gas into value-added products. Modular systems are easily de and transported to remote locations.

Advantages of using MW heating

- Volumetric heating
- Selective material heating
- Rapid heating

• Quick start-up and stopping

Convective Heating

(b) microwave heating

Fig 2. Selective material heating and reduce the bulk temperature

Modular Unit

Zero-Carbon Dioxide Emission Hydrogen Production

□ WVU patented technology turns natural gas into hydrogen and high value carbon without carbon dioxide:

 $CH_4 \rightarrow C_s(Advnaced\ Carbon) + 2H_2$

Turquoise Hydrogen

Carbon Composite

Carbon Nanotubes

Scale bar = 100 nm

Approach: Overcome the Challenges

The proposed technology is based on microwave-enhanced, multifunctional catalytic system to *directly* convert the light components of stranded natural gas.

Accomplishments to Date

- Electromagnetic sensitive catalysts
- Microwave reactor and microwave plasma pilot test
- Catalyst and carbon product characterization
- Kinetic modeling
- Technoeconomic analysis

Catalyst for Dielectric Heating: Ni-Pd supported by CNT

Effect of Flow Rate

Effect of Partial Pressure

• Under microwave irradiation, increase flow rate from 30-120 sccm doesn't decrease CH₄ conversion. Heat transfer mechanism improves catalyst turn over frequency.

• Similar trend is observed under MW vs conventional.

Scalo har - 100 nm

Catalyst for Dielectric Heating: Ni-Cu supported by CNT

Testing conditions: •Temp.=550 °C •Flow rate=30 sccm •Amount of catalyst = 0.2 g•Frequency = 5850 MHz

- The amount of CH_4 converted increased with increase in CH_4 concentration, 25 mmol/h vs 15 mmol/h
- Catalyst can handle 30%-100% methane concentration (partial pressures), stable for the duration of test
- Under microwave, 10Ni-1Cu/CNT Catalyst demonstrates obviously better performance than conventional heating heating, for example, 55% methane conversion under microwave vs 38% under thermal

Novel Catalyst Synthesis for Base Growth-solving the challenge in CNT-metal separation

Kinetic Modeling Results- Microwave vs Thermal, Ni-Cu/CNT Catalyst

Activation energy is lower under microwave reaction condition

Techno-economic Analysis (PNNL)

Microwave-Assisted Catalytic Methane Pyrolysis (MW) versus Thermal Decomposition (TD)

- Process modeling/ cost analysis for two models:
 - Microwave-assisted catalytic methane pyrolysis
 (MW) process under development
 - Commercial carbon black via thermal decomposition
 (TD) baseline process for comparison
- Potential carbon products:

Туре	Price (\$/kg)	Global Market (MT/yr)	_	A 100 c
Carbon black	0.4-2	12 M (2014)		carb
Graphite	10+	80 K (2015)		V
Carbon fiber	25-113	70 K (2016)	⊢	Crys
CNT	100+	5 K (2014)		cark
Needle coke	1.5	1.5M (2014)	[ingi

morphous arbon, less value

Crystalline carbon, higher value

Key Economic Assumptions

Pricing basis		Other assumptions						
Year	2018	Plant scale (kg CNT/day)	S=4,530; L=302,000					
Catalyst (\$/kg)	4.12	Plant scale (kg H ₂ /day)	S=1500; L=100,000					
Natural gas (¢/kg)	19.5	Project contingency (%)	25					
60% nitric acid (¢/kg)	21.2	OSBL cost (% of ISBL cost)	20					
H ₂ (\$/kg)	0-2.0	Capital cost scaling factor	0.6					
Cooling water (¢/MGal)	14.7	ROI (%)	15					
Electricity (¢/kWh)	5.04	Depreciation (%)	10					

M = million; K = thousand; MT = metric ton Dagle, et al., PNNL-26726, 2017

Techno-economic Analysis (PNNL)

Microwave (MW) and Thermal Decomposition (TD) Process Models

Process flow diagram for microwave-assisted catalytic methane pyrolysis (MW) – under development

- Lower temperatures required (< 800°C)
- Requires catalyst/ carbon separation & catalyst resynthesis
- Produces valuable carbon nanotube product

Process flow diagram for thermal decomposition
 (TD) - *baseline commercial process*

- Thermal process, requires high temperatures (>1200°C)
- Relatively simple process
- Produces solid carbon black as main product
- Technically mature, commercially available

Techno-economic Comparison – Results & Discussion

	Microwave-Assisted Catalytic Pyrolysis (MW)	Carbon Black Process via Thermal Decomp. (TD)	S		Sr	$\begin{array}{l} \textbf{nall Sca} \\ \textbf{H}_2 = 15 \end{array}$	ale 00 kg/day	Large So $H_2 = 1$	c ale LOOk kg/day
Configuration			10 _T		0.70	C = 453	0 kg/day	C = 3(J2K Kg/day
Reactor Temp (°C)	550	1300	\$/kg) ~		8.78		8.03		
Conversion (%)	45	40	rice (
Carbon recovery (%)	100 (Acid wash)	(Bag filter)	ling P						
Heat source	80% fuel, 20% power	100% fuel	el A				_		
Hydrogen recovery (%)	90 (PSA)	90 (PSA)	Carbo					1.78	1.69
Process Measures			un u						
Energy (%, LHV)	90.2	75.1	Minir						
Carbon (%)	89.1	72.5	_2 ⊥	N	VW Sma		TD Small	MW Large	TD Large
CO ₂ emission (kg/kg C)	0.41	1.40	Variable cost w/o credits		w/o credits Capital cost		Other costs	Hydrogen credits	

- Min. carbon selling price (MCSP) of MW process slightly greater than TD process due to solid separation and catalyst regeneration cost.
- MW process has higher energy and carbon efficiency, and lower CO₂ emission, versus TD process due to lower operating temperature and higher single pass conversion.
 - Note: zero CO_2 emission enabled with process modification, to be evaluated.
- Carbon nanomaterial product from MW process is crystalline, higher value than amorphous carbon produced from TD process.

Updated TEA for Different Microwave Pyrolysis Cases

- The crystalline carbons from our technology will need to sell at price similar or even lower than carbon black \$0.7-1.0/kg
- We know these carbon can be sold at price much higher than this.
- Benefit from CO₂ tax is not considered

*() MCSP w/ hydrogen credits Variable cost w/o credits Capital cost Other costs Hydrogen credits

Minimum selling price has 15% return built in already

Overview Pilot Test

Current status:

Luest

(1) tested spouted and fluidized bed reactor prototypes
(2) evaluated fluidization of multiple materials
(3) shown MWCNT microwave plasma entrainment

Prototype reactor characterization

The particles get entrained in the vertical countergravity gas flow and are continuously recirculated

Reactor configurations iteratively modified to maximize plasma extents and particle interaction

General description

- Feed supplied vertically from below in either spouted or fluidized configuration;
- Ionized gas (plasma) is launched horizontally cross-axis to entrained feed;
- Exhaust entrainment and particle loss controlled by limiting gas velocities.

Instrumentation:

- Viewports for camera and spectral capture
- TC and pressure transducers downstream

TEM indicated growth of CNTs following microwave plasma treatment of methane entrained MWCNTs

Synergy Opportunities

- CO₂-free hydrogen utilization.
- Hydrogen for CO₂ conversion
- Simultaneous conversion of natural gas and CO₂
- Possible integration of renewable power- intermittent nature

Project Summary

Catalyst formulation Ni-Pd and Ni-Cu are developed. Precious metal Pd is replaced by Cu
 The microwave sensitivity are observed. New catalyst formulation "base-growth" is developed which will lower the CAPEX and OPEX.

□Process simulation and TEA model developed.

☐ Kinetics model has been developed.

☐ Microwave plasma pilot plant commissioning

- Tested spouted and fluidized bed reactor prototypes
- Evaluated fluidization of multiple materials
- Shown MWCNT microwave plasma entrainment

Future Work

Develop low-cost catalyst-CNT separation processes
Scale-up catalyst synthesis protocol
Pilot scale microwave plasma reactor test at H-Quest
Post test characterization of spent catalysts and carbon nanomaterials
Process simulation and technoeconomic analysis based on pilot test data
Market research & development of advanced carbon materials.

 Gantt Chart

 Table 4.1. Updated Project Timeline Green=original schedule, Orange=task extension into BP-2

Task Name	Assigned	Year 1			Year 2								
	Resources	(Qtr)			<u>(Q</u>	<u>(tr)</u>		1	<u>(Q</u>	tr)			
		1	2	3	4	1	2	3	4	1	2	3	4
Task 1. Project Management and Planning	Hu												
Task 2. Catalyst Design, Synthesis and	Li/Liu/Dagle												
Characterization												 	
Subtask 2.1. Explore Supported and	Li/Liu												
Unsupported Bimetallic Catalysts													
Subtask 2.2 Effect of Promoters on the	Li/Liu/Dagle												
Formation of CNTs/CNFs													
Task 3. Variable Frequency Microwave	Hu												
Reactor Test													
Subtask 3.1 Study Effect of Reaction	Hu												
Variables													
Subtask 3.2 Evaluate the Effect of Reactor	Hu												
Configurations on the Process Performance													
Subtask 3.3 Evaluate Effect of Feedstock	Hu												
Composition on the Process Performance													
Task 4. Separation of Catalyst-CNTs &	Li/Hu												
CNFs and Catalyst Regeneration													
Task 5. Intrinsic Nature of Metal-Support	Liu/Li/Dagle												
Interaction for CNT and H ₂ Formation													
Task 6. Kinetic Modeling	Neal/Liu												
Task 7. Pilot Demonstration with a 6 kWSkoptsov													
Microwave Plasma Reactor													
Task 8. Reactor Modeling, Commercial	C4-MCP												
Process Flowsheet, Technoeconomic													
Analysis (TEA) and Tech-to Market													

Appendix

Approach: Overcome the Challenges

The proposed technology is based on microwave-enhanced, multifunctional catalytic system to *directly* convert the light components of stranded natural gas.

Field distribution of a TE10 waveguide (red arrows: electric field; blue arrows: magnetic field; the direction of wave propagation is -x; a larger arrow indicates a stronger field)[2].

- Selective heating: T_{Metal} > T_{CNT}
- Lower activation energy

TEM images of produced carbon nanomaterials and spent catalyst

Scale bar = 100 nm

These crystalline carbons will be used as carbon composite, electrode for steel and aluminum industries, polymer additives. They will not be just sold as CNTs

Update-Pilot Test

Kinetic Modeling: Reaction order of methane pyrolysis over NiPd/CNT

$$\ln(rate) = -\frac{E_a}{R} * \frac{1}{T} + \ln(p_{CH4}^n * k_{app})$$

- Reaction order of 0.6 for CH₄ at 5-30% concentration
- $K_{\rm app} = 86498 \ (h^{-1} bar^{-0.6})$

Rate equation for CNT formation: rate = 86498 h⁻¹bar^{-0.6} * p_{CH4}^{0.6} * exp(-6167.6/T)

West Virginia University.

Activation energy for methane pyrolysis over NiPd/CNT

- 3 mg catalyst, reduction in 10%H₂ at 400°C for 1 h, followed by reaction with 250 ml/min of 30%CH₄/Ar at 500-575 °C for 20 min
- Activation energy of 51.3 kJ/mol for NiPd/CNT catalyst 86.8-115.8 kJ/mol for CH₄ dissociation over Ni(111) 58.6-85.7 kJ/mol for Ni-Mg-Al catalyst

Methane Conversion without Entrained Particles

Promising results for a prototype unoptimized system. Baseline for catalytically assisted conversion.