**Fully Distributed Acoustic and** Magnetic Field Monitoring via a Single Fiber Line for **Optimized Production of Unconventional Resource Plays DE-FE0031786** 

### Daniel Homa



Virginia Tech





U.S. Department of Energy National Energy Technology Laboratory 2021 Carbon Management and Oil and Gas Research Project Review Meeting August 2021

# **Presentation Outline**

- Research Approach
- Multi-Material Sensing Optical Fiber
  - Performance Modeling via Theoretical Analyses
  - Fiber Design and Fabrication
- Distributed Acoustic Sensing System
  - Sentek Instrument
- Testing Facilities
- Data Analysis and Visualization

# **Research Approach**

### picoDAS<sup>TM</sup> Fiber Optic Sensing Technology

- Relies on an elegant marriage between a special type of FBG device and a ۲ time-division-multiplexing (TDM) signal processing scheme
- Superior performance •
  - 100 times more sensitive than traditional DAS systems
  - Uniform sensitivity distribution across entire sensing range
  - Capable of multi-parameter measurements.



3

#### Interrogator

# **Research Approach**

### Multi-Material Magnetic Sensing Fiber

- Single mode optical fiber core with a magnetostrictive material in the cladding
  - The magnetostrictive material expands or contracts upon exposure to a magnetic field, inducing a strain on the FBG based interferometers in the optical fiber
  - Stack-and-draw technique utilized to incorporate dissimilar materials in the fiber via optical fiber draw
- Magnetostrictive materials
  - Terfenol-D<sup>™</sup>, Metglas 2605<sup>®</sup>, Nickel
- All other sensing schemes require bonding of the magnetostrictive material to the fiber, including it in the coating, and/or utilizing other post-processing schemes



# **Research Approach**

Demonstration of Magnetic Sensing System

- Response of a prototype sensing fiber to a magnetic field generated by the alternating current of an air solenoid
  - Minimum Magnetic Field: ~0.2 mT
- Performance improvements
  - Increase relative diameter of magnetostrictive wire
  - Enhance coupling efficiency
  - Use of materials that exhibit larger magnetostriction (Metglas<sup>®</sup>)
- Improve fiber handling and splicing techniques



### **Theoretical Modeling**

- Developed theoretical models and techniques to optimize magnetic sensing fiber performance and evaluate response to magnetic field
  - Met Success Criteria for Milestone 2: Minimum Sensitivity of 10 mT



#### Laboratory Scale Test Facilities

- Test stands (2) to evaluate magnetic response of sensing fiber
  - Air-core solenoid
  - Length = 2 meters, 5 meters
- Soil test beds (2) for simulated environmental testing
  - Uniform earth material
  - Controlled magnetic and acoustic sources
  - Bare sensing fiber/Cemented in metal tubing
- High temperature testing (>150°C)
- Met Success Criteria
  - Minimum Magnetic Field Exposure: 1mT
  - Maximum Exposure Temperature:  $\geq 150^{\circ}$ C





### **Multi-Material Sensing Fiber Fabrication**

- Developed improved techniques to fabricate relatively long lengths (>500 m) of uniform multi-material sensing fibers samples
  - Magnetostrictive cladding wires: Ni, Metglas<sup>®</sup>
  - Multiple number of magnetostrictive rods: 2/3
  - Acrylate coating
- On Schedule to meet Success Criteria
  - Fiber Length: >50 m
  - Tensile Strength of >50 kpsi
- Successfully inscribed FBG based sensors via femtosecond laser inscription







#### picoDAS System Development

- Systematically tested and evaluated Sentek DAS systems
  - Demonstrated measurement resolution of 0.2 nanostrain as defined by  $3\sigma$
  - Demonstrated spatial resolutions of 2 m and 5 m
- Reduced interrogator size (6U to 4U) to permit the use of an instrument enclosure with a height reduced from 6U to 4U
- On Schedule/Met Success Criteria



#### System Demonstration and Data Analysis

- Evaluated picoDAS system using buried sensing cable
- Developed data analysis software suite







#### Hammer Drop/Tamper



#### **Shovel Digging**



**Fast ICA Algorithm Development** 

- Separation of mixed acoustic and magnetic responses in real time
  - Provide enhanced value to geoscientists; We are testing and improving upon the fast independent component analysis (ICA) method to separate mixed signals
- Demonstrated the fast ICA algorithm to separate mixed signals

300 400 500

300 400 500

200 100



**Observed** mixed

#### **ICA-separated signals**

80 Hz

200 Hz

### Algorithmically separated matches ideal separation

80 Hz

700 800 900 1000



# Accomplishments to Date

- Developed theoretical models and techniques to optimize magnetic sensing fiber performance and evaluate response to magnetic field
- Designed, constructed and commissioned laboratory test facilities to evaluate the sensor response to acoustic and magnetic fields
- Successfully fabricated continuous (> 500 m) multi-material sensing fibers with Ni and Metglas cladding wires
- Fabricated FBG based sensors in multi-material fibers via femtosecond laser inscription
- Successfully designed and manufactured picoDAS interrogators with 2 and 5 meter spatial resolution
- Systematically tested the Sentek DAS systems to demonstrate a measurement resolution of 0.2 nanostrain as defined by 3σ
- Evaluated the performance of the picoDAS system with a buried sensing cable upon exposure to varied acoustic stimuli
- Completed initial full sensing system integration

# Lessons Learned

- Fabrication of long lengths (~kms) of uniform multi-parameter sensing fiber required significant process development
  - Optimized preform stacking design and assembly techniques
  - Optimized draw parameters (preform feed rate/draw speed)
- Optical coupling from standard single mode fiber to the multimaterial sensing fiber remains a challenge
  - Investigated methods for fiber termination
  - Developed splicing parameters to ensure adequate optical coupling
- Optimization of magnetostrictive wire sizes and spacing in cladding was necessary to inscribe high quality FBGs

# Synergy Opportunities

- High resolution sensing and imaging of the subsurface will provide operators with more clarity of the subsurface and the real-time information for optimized drilling and production.
  - Cross-well Imaging Techniques
  - Passive/Active Magnetic Ranging
  - Position Monitoring for Downhole Completion Devices
  - Monitoring while Drilling (MWD)/Logging while Drilling (LWD)
  - Permanent Well Monitoring
- Reliability and performance capabilities of the fiber optic sensing system will assure that the operators have the most reliable and accurate information necessary to make critical decisions

# **Project Summary**

### - Key Finding

- Theoretical modeling demonstrated adequate sensitivity (<1 mT) can be achieved with multi-material sensing design
- Successfully demonstrate the ability to fabricate long (>500 meters) continuous lengths of multi-material sensing fiber
- Demonstrated superior performance of prototype picoDAS systems
- Developed the basis for the ICA analysis techniques for single seperation
- Next Steps
  - Optimize ICA algorithms to enhance signal separation
  - Manufacture and test "rackable" 4U picoDAS interrogator
  - Fabricate long lengths (>1 km) multi-material (Ni, Metglas®)sensing fiber
  - Perform full system integration and testing
  - Optimize sensing fiber design for optimal performance
  - Begin initial planning for field trial deployment

# Acknowledgements

### Department of Energy

National Energy Technology Laboratory Project Manager: Gary L. Covatch



### <u>Halliburton</u>

Industrial Support: Dorothy Wang, Ph.D.

# HALLIBURTON

### Prysmian Group

Industrial Support: Brian Risch, Ph.D.



Linking the Future

### Weatherford

Industrial Support: Zhuang Wang, Ph.D.



### THANK YOU FOR YOUR TIME

Questions?

# Appendix

- -Benefit to the Program
- Project Overview
- -Organization Chart
- Gantt Chart
- Bibliography

# Benefit to the Program

- The technologies developed in this program will have an immediate and profound impact on the widespread approach to both subsurface imaging and distributed fiber optic sensing
  - Distributed multi-parameter sensing on a single fiber will provide operators with a tool with unprecedented sensing density
- Provide operators with an enhanced electromagnetic field mapping tool
  - Enable improved resolution imaging of the subsurface and potentially aid in the discovery of new subsurface phenomena
- Provide operators with the most reliable and accurate information necessary to make the critical decisions to ensure the best use of the Nation's subsurface resources

# **Project Overview**

Goals and Objectives

- <u>Objective</u>: Develop a fiber-optic sensing system capable of realtime simultaneous and distributed measurements of multiple subsurface parameters via a first-of-its-kind optical fiber with an electromagnetic field sensing capability over an unprecedented sensing length
- <u>Goal</u>: Design and fabricate a multi-material sensing fiber for distributed magnetic field and acoustic measurements
- <u>Goal</u>: Design and construct an optical interrogation system and develop the sensing algorithms for distributed magnetic field and acoustic measurements with ultra-high sensitivity via a single sensing fiber
- <u>Goal</u>: Demonstrate the performance of a fully integrated multiparameter sensing system in a simulated laboratory environment <sup>20</sup>

# **Project Overview**

### Success Criteria

| ID  | Title                                             | Description                                                                                             | Result           | Decision<br>Point | Date    |  |
|-----|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|-------------------|---------|--|
| SC1 | Theoretical Evaluation                            | 1. Minimum Sensitivity: 10 millitesla (mT)                                                              | <10 mT           | D1                | 9/30/20 |  |
| SC2 | Test Facilities                                   | <ol> <li>Maximum Exposure Temperature: ≥ 150°C</li> <li>Minimum Magnetic Field Exposure: 1mT</li> </ol> | >150°C<br><<1 mT | D1                | 9/30/20 |  |
| SC3 | Fabrication of Magnetic<br>Sensing Fiber          | <ol> <li>Minimum Fiber Length: 50 m</li> <li>Minimum Tensile Strength of 50 kpsi</li> </ol>             |                  | D2                | 9/30/21 |  |
| SC4 | Distributed Acoustic and<br>Strain Sensing System | <ol> <li>Minimum Spatial Resolution: 2m</li> <li>Minimum Strain Sensitivity: 0.5 nanostrain</li> </ol>  |                  | D2                | 9/30/21 |  |
| SC5 | Distributed Magnetic<br>Sensing System            | C I 7 Minimum Spatial Resolution. Sm                                                                    |                  |                   | 9/30/22 |  |

# **Organization Chart**

- Lead PI : Dr. Gary Pickrell (Virginia Tech, CPT)
  - Provide executive management for all phases of the project, and oversee the selection, fabrication, and characterization of the fibers.
- Co-PI : Dr. Eileen Martin (Virginia Tech)
  - Support all phases of the project and provide expertise in all technical aspects of the project and efforts pertaining to the testing and analysis of the selected optical fibers.
- Co-PI: Dyon Buitenkamp (Sentek Instrument)
  - Daily project management, to include technical insights, under the guidance of the PI and Co-PI.
- Technical Manager: Dr. Daniel Homa (Virginia Tech)
  - Daily project management, to include technical insights, under the guidance of the PI and Co-PIs

### **Gantt Chart**

|        | GANTT CHART                                                                         | Project Year 1 |    |    |    | Project Year 2 |    |    |          | Project Year 3 |    |    |    | PY 4 |
|--------|-------------------------------------------------------------------------------------|----------------|----|----|----|----------------|----|----|----------|----------------|----|----|----|------|
| Task # | Task Name                                                                           | Q1             | Q2 | Q3 | Q4 | Q1             | Q2 | Q3 | Q4       | Q1             | Q2 | Q3 | Q4 | Q1   |
| 1      | Project Management and Planning                                                     |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M1     | MILESTONE 1                                                                         |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 2      | Workforce Readiness Plan                                                            |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 3      | Data Management Plan                                                                |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 4      | Technology Maturation Plan                                                          |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 5      | Theoretical Modeling and Analyses                                                   |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M2/D1  | MILESTONE 2 / DECISION POINT 1                                                      |                |    |    |    | /              |    |    |          |                |    |    |    |      |
| 6      | Construction of the Simulated Subsurface Test Facilities                            |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M3/D1  | MILESTONE 3 / DECISION POINT 1                                                      |                |    |    | (  |                |    |    |          |                |    |    |    |      |
| 7      | Multi-Parameter Sensing Fiber                                                       |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 7.1    | Preform and Fiber Fabrication                                                       |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 7.2    | Fiber Grating Array Fabrication                                                     |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M4/D2  | MILESTONE 4/ DECISION POINT 2                                                       |                |    |    |    |                |    |    | <u> </u> |                |    |    |    |      |
| 8      | Demonstration of Distributed Sensing System                                         |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 8.1    | Interrogation Design and Implementation                                             |                |    |    |    | _              |    |    |          |                |    |    |    |      |
| 8.2    | Distributed Sensing System Construction and Demonstration with<br>Commercial Fibers |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M5/D3  | M5/D3 MILESTONE 5 / DECISION POINT 2                                                |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 9      | Fabrication of High Temperature DAS Fiber                                           |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 10     | Integration of Distributed Sensing Fiber and System                                 |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 10.1   | Fabrication of Distributed Magnetic Sensing Fiber                                   | 1              |    |    |    |                |    |    |          |                |    |    |    |      |
| 10.2   | Development of the Simulated Subsurface Test Facilities                             | 1              |    |    |    |                |    |    |          |                |    |    |    |      |
| 10.3   | Demonstrate Distributed Sensing with Magnetic Sensing Fiber                         |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 10.4   | Perform Sensor Calibration and Verification                                         |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 11     | Prototype Sensing System Testing                                                    |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 11.1   | Fabrication of Prototype Distributed Magnetic Sensing Fiber                         |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 11.2   | Construct Multi-Parameter Sensing System                                            |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 11.3   | Test Sensing System and Evaluate Performance                                        |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M6     | MILESTONE 6                                                                         |                |    |    |    |                |    |    |          |                |    |    |    |      |
| 12     | Prepare and Submit Final Report                                                     |                |    |    |    |                |    |    |          |                |    |    |    |      |
| M7     | MILESTONE 7                                                                         |                |    |    |    |                |    |    |          |                |    |    |    |      |

# Bibliography

- Presentation entitled "Development of Joint Acoustic and Magnetic Sensing in a Single Fiber" was accepted to Society of Exploration Geophysicists Annual Meeting workshop on distributed fiber optic sensing on October 1, 2021
- Future Publications
  - Several manuscript submissions planned for Y2/Q4, Y3/Q1
  - M.S. thesis by S. Morgan in Mathematics on fiber-optic sensor signal separation anticipated to submit in Spring '22
  - Ph.D. dissertation by Z. Hileman in Materials Science and Engineering on magnetic and multi-parameter sensing via multi-material optical fiber to submit in Fall '21/Spring '22