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Advanced Analytics to Predict Hazards to Offshore Infrastructure

Ocean and Geohazard Analysis

Why is this work important?
Limiting environmental and community impact 
and improving safety of offshore operations 
and legacy infrastructure depends on 
forecasting and avoiding hazards. 

Issue/R&D Need  
• Technology that integrates big data and 

science-based analytics for offshore hazards 
does not exist. 

• Advanced analytics can offer near real-time 
assessment of risks, integrate different hazard 
types, and also forecast vulnerabilities.

• Packaging analytics in a flexible smart tool 
improves accessibility and forecasting at 
multiple scales.
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Offshore Task 6: Infrastructure and Metocean Background

Motivation
• Demand on offshore Exclusive 

Economic Zone (EEZ) in the U.S. and 
around the world is increasing, with 
offshore infrastructure expected to 
increase 50–70% by 2028.

• Between 2004-2008, 181 structures 
and 1,673 wells in the Gulf of Mexico 
were destroyed by five hurricanes.

• Climate change is projected to 
intensify extreme events and 
increase their frequency.
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Offshore Task 6: Infrastructure and Metocean Approach
Approach: Assess and predict offshore 
hazards

• Hazards related to the metocean and seafloor 
environments include seabed instability, 
extreme wind/wave/current events, 
earthquakes, hazardous material spills

• Hazards are often interrelated. Example: 
Hurricanes are offshore hazards and drivers of 
other hazards, such as submarine landslides.

• Offshore structures impacted may include: 
• Petroleum and carbon storage platforms 

(both legacy and active)
• wind energy 
• pipelines 
• bridges 
• tunnels  
• undersea internet cables
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Task 6 - Infrastructure and Metocean Technology

Offshore Unconventional FWP

Example of data collected: 
Above - Avg. Bottom Current Velocity (12 yr. avg.)

Below – high-resolution bathymetric data and 
labeled hazards (in orange and purple)

Research Problem:
• Changes in the ocean environment (i.e., climate change, mudslides or burial from subsea 

currents, strong weather events or natural fluctuations) have been linked to billions of 
dollars of impacts.

• These events can have a significant effect on the success and longevity of offshore 
infrastructure, as well as affect safety and cost during exploration, production, and storage 
activities.

Research Approach:
• Determine current state of knowledge regarding hazardous metocean and bathymetric 

conditions, and data availability regarding these conditions and historic events.
• EY19-EY20: Evaluated if AI/ML models can be developed to better identify current 

hazardous metocean and bathymetric conditions. Developed, trained, and tested AI/ML 
models to identify conditions and forecast changes and vulnerabilities to offshore 
infrastructure.

• EY21: Refine Smart Tool to host AI/ML models and develop user interface. Develop 
forecasting and integrate selected hazard types into tool. Release desktop version at end 
of EY. 

• EY22+: Refine analytical logic and functionalities through user testing. Build metocean and 
seabed hazard database for release on EDX. Report research in technical report or 
publication. 

Benefit:
• Improved characterization of seabed-related hazards in the offshore can help prevent 

catastrophic incidents that impact the environment, coastal communities, and their 
economies.
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Approach for Infrastructure and Metocean Technology

The Ocean & Geohazard Analysis Smart Tool

• Identify datasets for 
diverse hazard analyses

• Develop analytical 
framework for an Ocean 
& Geohazard Analysis 
(OGA) Smart Tool

• Train and validate AI/ML 
models

• MetOcean statistical and 
probabilistic analyses

• Release tool, data and 
models through the 
online platform hosted 
by Energy Data 
eXchange (EDX)

Ongoing work: 

Collect large amounts of data, 
integrate from multiple sources to 
support analytics

• Digitizing old & unstructured 
data sets

• Aggregating all open-source 
data available nationally and 
internationally

Novel analyses of these datasets using:
• Machine Learning
• Nonlinear Dynamics
• Prediction Statistical Intervals
• Monte Carlo simulations
• Dimensionality reduction 

methods
• Liang causality
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Developing & 
innovating 

data, 
metadata, & 

tools for a 
range of 

needs

NETL’s Geo-Data Science & Discovery

• SmartSearch automates 
data discovery through 
user preferences, web 
searching, and 
analyzing data 
relevance

• NETL’s SmartSearch used 
to build a seafloor 
sediments database to 
support analyses
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OGA Smart Tool Interface

Smart Tool allows users to 
interact with their data and 
select or integrate 
appropriate models 

Produces forecasts of 
areas more susceptible to 
metocean and seafloor 
hazards
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Landslide Detection

The model trains on Image and Mask 
pairs shown below.

It is given an input image and scored on 
how accurately it can produce a mask 
for the image.

The transfer of information forward in a residual 
network.
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Locating Critical Parameters to Identify Mass Wasting Geohazards

Challenges
• Inconsistent labeling, with different experts highlighting landslides at 

varied resolution the masks do not consistently encompass the same 
features. To overcome we have created a small scarp dataset with 
three reviewers to improve consistency and feature clarity.

• Small dataset, to improve the size we augment our dataset by 
flipping rotating and scaling existing images.

• Most models are designed for three band input images 
(Red/Green/Blue) while the images we use have seven bands. To 
solve this, we modify an existing model to accept the seven-band 
input image.

Objective: Using high-resolution seafloor images, develop a 
data driven neural network model to identify the locations of 
submarine landslides.

Model Design
• We use as a base the Fully Convolutional ResNet model, a 

prebuilt network available with the PyTorch framework.
• The model performs semantic segmentation to create an 

output mask highlighting landslides given an input image.
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Landslide Detection Results

Early model output 
(right) showing low 

likelihood of landslide 
(black) and high 

likelihood of landslide 
(white). Results show 

model identifying 
terraces and basins as 

high likelihood of 
landslide areas.

Terrace

Mini-Basin

Most recent results (left) show the two 
output layers of the network (bottom C, D) 

which are combined to create the 
prediction mask (A) with the ground truth 

(B) for comparison.
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Landslide Susceptibility
1 2Two approaches for 

analyzing seafloor 
landslide potential in the 
GOM

1. Risk-based Approach

2. Machine Learning (ML) 
Approach
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Risk-based approach, walk through workflow
Triggers and conducive conditions
Based off a paper by Hitchcock et al., 2010
Output map shows where high risk triggers and conducive conditions are spatially (>= 0)

2nd way, ML approach
Train multiple models to find the best performing one. binary
Output is the probability of a pixel being a landslide (0 to 1)

Transition: Importance of using two approaches




Risk-Based Approach

Landslide Susceptibility Results
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ML Approach

Landslide Susceptibility Results
GBC Model Output

• Utilizing the same input criteria along 
with robust ML models to predict 
landslide potential.
• Gradient Boosting Classifier (GBC)
• Artificial Neural Network (ANN)

• Improving accuracy using tuning 
methods.

• Hyperparameter random search
• Dimensionality reduction (SVD)

• Testing/validating models at various 
spatial resolutions (250 m, 500 m, 1,000 
m, 2,000 m, 4,000 m).

Accuracy 
evaluated against 
validation dataset

GBC: 70.0%
ANN: 65.3%
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Transition: take a step back and talk about some of the limitations of ML



ML Approach with Variable Grid Method

Landslide Susceptibility Results

• The Variable Grid Method (VGM) 
(Bauer & Rose, 2015) utilized to 
visualize spatial uncertainty.

• Smaller grid sizes indicate a higher 
certainty of model predictions for that 
region while larger grid sizes indicate 
lower certainty.
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Advanced Probability and Statistics
Generalized Extreme Value (GEV) distributions
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Wave Modeling Development

• Approach to wave modeling 
• Creating synthetic physics-

based tropical cyclone 
events in collaboration with 
MIT 

• Critical for changing climate 
risk projections

• Waves are common 
catastrophic events to 
infrastructure, submarine 
landslide and mass 
movements 

• Modeling and forecasting 
climate, ocean, and seafloor 
conditions within a flexible, 
AI/ML-informed Smart Tool 
can accelerate and integrate 
offshore hazard assessment. 

Significant wave height for the 100-years return period obtained from 
the GCM derived events ensemble for the (a) present and (b) future 
wave climates. Blank areas denote regions where less than 4 models 
show the same trend.
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Self-organizing Maps – An Unsupervised Neural Network
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Self-organizing Maps – An Unsupervised Neural Network
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CIIAM Model Updates

Pathways:
Red=attracting
White=isolated

Large 
shelves are
isolated:
• WFS
• LaTex
• Yucatan
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Collaboration and external interest 
External CIAM Users

Country Research Institute. Study region Status
Spain ICM Marine Science Institute Spain. Mediterranean Publication in progress

India National Institute of Oceanography India Gulf of Bengal Publication in progress

Mexico Engineering & Coastal Processes UNAM Mexico Caribbean & Loop 
Current Publication in progress

Brazil National Institute for Space Research Brazil Tropical Atlantic Published by a Nature journal

Mexico CICESE Ensenada Center for Scientific Research and 
Higher Education, Mexico Deep GoM

Maslo, A., et al. (2020). 
https://doi.org/10.1016/j.jmarsys.2

019.103267

Mexico CICESE Ensenada Center for Scientific Research and 
Higher Education, Mexico NW GoM

Gough, M. K., et al . (2019). 
https://doi.org/10.1175/JPO-D-17-

0207.1

United 
Kingdom

National Oceanography Centre
Marine Systems Modelling Group North Sea Preliminary results obtained

Saudi 
Arabia Red Sea Modeling and Prediction Group KAUST Red Sea Work in progress

France IRD/OCEANS/LOPS/IUEM TBD Planned for later this year

USA UNC at Chapel Hill Atlantic wind Preliminary results obtained
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Key Takeaways

Values Delivered

Advancing the current state of 
knowledge, supporting offshore 
activities, forecasting risks to 
maintain environmental integrity 
that may evolve with a changing 
climate.

Improved characterization of 
metocean and seabed related 
hazards will help to prevent 
catastrophic incidents as human 
and engineered systems 
integrate with natural systems in 
the offshore environment.

• Technology that integrates big data 
and science-based analytics for 
offshore hazards does not exist 

• Advanced analytics can offer near-
real time assessment of risks but also 
forecast vulnerabilities

• Smart Tool:
• adapts to data 

availability/quality
• adapts to different regions
• incorporates new analytics and 

datasets
• Flexible to integrate NETL tools 

and user tools for advanced 
predictive and spatial analysis

Products available at 
https://edx.netl.doe.gov/offshore/
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