Ocean & Geohazard Analysis

Rodrigo Duran
MacKenzie Mark-Moser
Co-PIs, Offshore FWP Task 6

Presentation to Carbon Management and Oil and Gas Research Project Review Meeting
Aug. 26, 2021
This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Rodrigo Duran1,2,3, MacKenzie Mark-Moser1,2, Patrick Wingo1,2, Alec Dyer1,2, Dakota Zaengle1,2 Scott Pantaleone1,3, Brendan Hoover1,2, Jennifer Bauer1, Kelly Rose1

1National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA

2NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR 97321, USA

3Theiss Research, 7411 Eads Ave., La Jolla, CA 92037, USA
Why is this work important?
Limiting environmental and community impact and improving safety of offshore operations and legacy infrastructure depends on forecasting and avoiding hazards.

Issue/R&D Need

• Technology that integrates big data and science-based analytics for offshore hazards does not exist.
• Advanced analytics can offer near real-time assessment of risks, integrate different hazard types, and also forecast vulnerabilities.
• Packaging analytics in a flexible smart tool improves accessibility and forecasting at multiple scales.
Offshore Task 6: Infrastructure and Metocean Background

Motivation

- Demand on offshore Exclusive Economic Zone (EEZ) in the U.S. and around the world is increasing, with offshore infrastructure expected to increase 50–70% by 2028.

- Between 2004-2008, 181 structures and 1,673 wells in the Gulf of Mexico were destroyed by five hurricanes.

- Climate change is projected to intensify extreme events and increase their frequency.
Offshore Task 6: Infrastructure and Metocean Approach

Approach: Assess and predict offshore hazards

- Hazards related to the metocean and seafloor environments include seabed instability, extreme wind/wave/current events, earthquakes, hazardous material spills

- Hazards are often interrelated. Example: Hurricanes are offshore hazards and drivers of other hazards, such as submarine landslides.

- Offshore structures impacted may include:
 - Petroleum and carbon storage platforms (both legacy and active)
 - wind energy
 - pipelines
 - bridges
 - tunnels
 - undersea internet cables
Task 6 - Infrastructure and Metocean Technology

Research Problem:

- Changes in the ocean environment (i.e., climate change, mudslides or burial from subsea currents, strong weather events or natural fluctuations) have been linked to billions of dollars of impacts.
- These events can have a significant effect on the success and longevity of offshore infrastructure, as well as affect safety and cost during exploration, production, and storage activities.

Research Approach:

- Determine current state of knowledge regarding hazardous metocean and bathymetric conditions, and data availability regarding these conditions and historic events.
- **EY19-EY20**: Evaluated if AI/ML models can be developed to better identify current hazardous metocean and bathymetric conditions. Developed, trained, and tested AI/ML models to identify conditions and forecast changes and vulnerabilities to offshore infrastructure.
- **EY21**: Refine Smart Tool to host AI/ML models and develop user interface. Develop forecasting and integrate selected hazard types into tool. Release desktop version at end of EY.
- **EY22+**: Refine analytical logic and functionalities through user testing. Build metocean and seabed hazard database for release on EDX. Report research in technical report or publication.

Benefit:

- Improved characterization of seabed-related hazards in the offshore can help prevent catastrophic incidents that impact the environment, coastal communities, and their economies.

Example of data collected:
Above - Avg. Bottom Current Velocity (12 yr. avg.)
Below – high-resolution bathymetric data and labeled hazards (in orange and purple)
Approach for Infrastructure and Metocean Technology

- Identify datasets for diverse hazard analyses
- Develop analytical framework for an Ocean & Geohazard Analysis (OGA) Smart Tool
- Train and validate AI/ML models
- MetOcean statistical and probabilistic analyses
- Release tool, data and models through the online platform hosted by Energy Data eXchange (EDX)

Ongoing work:

Collect large amounts of data, integrate from multiple sources to support analytics
- Digitizing old & unstructured data sets
- Aggregating all open-source data available nationally and internationally

Novel analyses of these datasets using:
- Machine Learning
- Nonlinear Dynamics
- Prediction Statistical Intervals
- Monte Carlo simulations
- Dimensionality reduction methods
- Liang causality
NETL’s Geo-Data Science & Discovery

Developing & innovating data, metadata, & tools for a range of needs

- SmartSearch automates data discovery through user preferences, web searching, and analyzing data relevance
- NETL’s SmartSearch used to build a seafloor sediments database to support analyses
OGA Smart Tool Interface

Smart Tool allows users to interact with their data and select or integrate appropriate models.

Produces forecasts of areas more susceptible to metocean and seafloor hazards.
Ocean & Geohazard Analysis Smart Tool Workflow

Choose offshore region of interest

Select hazards for risk assessment

Select type of analysis

Advanced risk analytics and spatial visualization

- All known hazards
- Mudslide
- Wind event
- Wave event
- Current event
- Erosion
- Earthquake
- Hurricane
- Hazmat spill

Default data, default analysis

Custom data, default analysis

Default data, custom analysis

Custom data, custom analysis
Landslide Detection

Locating Critical Parameters to Identify Mass Wasting Geohazards

Objective: Using high-resolution seafloor images, develop a data driven neural network model to identify the locations of submarine landslides.

Model Design
- We use as a base the Fully Convolutional ResNet model, a prebuilt network available with the PyTorch framework.
- The model performs semantic segmentation to create an output mask highlighting landslides given an input image.

Challenges
- Inconsistent labeling, with different experts highlighting landslides at varied resolution the masks do not consistently encompass the same features. To overcome we have created a small scarp dataset with three reviewers to improve consistency and feature clarity.
- Small dataset, to improve the size we augment our dataset by flipping rotating and scaling existing images.
- Most models are designed for three band input images (Red/Green/Blue) while the images we use have seven bands. To solve this, we modify an existing model to accept the seven-band input image.

The model trains on Image and Mask pairs shown below.

It is given an input image and scored on how accurately it can produce a mask for the image.
Landslide Detection Results

Most recent results (left) show the two output layers of the network (bottom C, D) which are combined to create the prediction mask (A) with the ground truth (B) for comparison.

Early model output (right) showing low likelihood of landslide (black) and high likelihood of landslide (white). Results show model identifying terraces and basins as high likelihood of landslide areas.
Landslide Susceptibility

Two approaches for analyzing seafloor landslide potential in the GOM

1. Risk-based Approach
2. Machine Learning (ML) Approach
Landslide Susceptibility Results

Risk-Based Approach

[Map showing landslide susceptibility with color coding: Low to High and corresponding landslide areas highlighted]
Landslide Susceptibility Results

ML Approach

• Utilizing the same input criteria along with robust ML models to predict landslide potential.
 • Gradient Boosting Classifier (GBC)
 • Artificial Neural Network (ANN)
• Improving accuracy using tuning methods.
 • Hyperparameter random search
 • Dimensionality reduction (SVD)
• Testing/validating models at various spatial resolutions (250 m, 500 m, 1,000 m, 2,000 m, 4,000 m).

GBC Model Output

Accuracy evaluated against validation dataset
GBC: 70.0%
ANN: 65.3%
Landslide Susceptibility Results

ML Approach with Variable Grid Method

- The **Variable Grid Method** (VGM) (Bauer & Rose, 2015) utilized to visualize spatial uncertainty.
- **Smaller grid sizes** indicate a higher certainty of model predictions for that region while **larger grid sizes** indicate lower certainty.

![Variable Grid Method Diagram](image_url)
Generalized Extreme Value (GEV) distributions

\[G(z) = \exp \left\{ - \left[1 + \xi \left(\frac{z - \mu}{\sigma} \right) \right]^{-1/\xi} \right\} \]
Wave Modeling Development

- Approach to wave modeling
- Creating synthetic physics-based tropical cyclone events in collaboration with MIT
- Critical for changing climate risk projections
- Waves are common catastrophic events to infrastructure, submarine landslide and mass movements
- Modeling and forecasting climate, ocean, and seafloor conditions within a flexible, AI/ML-informed Smart Tool can accelerate and integrate offshore hazard assessment.

Significant wave height for the 100-years return period obtained from the GCM derived events ensemble for the (a) present and (b) future wave climates. Blank areas denote regions where less than 4 models show the same trend.
Self-organizing Maps – An Unsupervised Neural Network
CIIAM Model Updates

Pathways:
- Red = attracting
- White = isolated

Large shelves are isolated:
- WFS
- LaTeX
- Yucatan
Collaboration and external interest

<table>
<thead>
<tr>
<th>Country</th>
<th>Research Institute.</th>
<th>Study region</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>ICM Marine Science Institute Spain.</td>
<td>Mediterranean</td>
<td>Publication in progress</td>
</tr>
<tr>
<td>India</td>
<td>National Institute of Oceanography India</td>
<td>Gulf of Bengal</td>
<td>Publication in progress</td>
</tr>
<tr>
<td>Mexico</td>
<td>Engineering & Coastal Processes UNAM Mexico</td>
<td>Caribbean & Loop Current</td>
<td>Publication in progress</td>
</tr>
<tr>
<td>Brazil</td>
<td>National Institute for Space Research Brazil</td>
<td>Tropical Atlantic</td>
<td>Published by a Nature journal</td>
</tr>
<tr>
<td>Mexico</td>
<td>CICESE Ensenada Center for Scientific Research and Higher Education, Mexico</td>
<td>NW GoM</td>
<td>Gough, M. K., et al. (2019). Link</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>National Oceanography Centre Marine Systems Modelling Group</td>
<td>North Sea</td>
<td>Preliminary results obtained</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>Red Sea Modeling and Prediction Group KAUST</td>
<td>Red Sea</td>
<td>Work in progress</td>
</tr>
<tr>
<td>France</td>
<td>IRD/OCEANS/LOPS/IUEM</td>
<td>TBD</td>
<td>Planned for later this year</td>
</tr>
<tr>
<td>USA</td>
<td>UNC at Chapel Hill</td>
<td>Atlantic wind</td>
<td>Preliminary results obtained</td>
</tr>
</tbody>
</table>
Publications & Presentations

Publications

https://doi.org/10.22541/au.162126717.71153804/v1

Presentations

Key Takeaways

- Technology that integrates big data and science-based analytics for offshore hazards does not exist.
- Advanced analytics can offer near-real time assessment of risks but also forecast vulnerabilities.
- Smart Tool:
 - adapts to data availability/quality
 - adapts to different regions
 - incorporates new analytics and datasets
 - Flexible to integrate NETL tools and user tools for advanced predictive and spatial analysis.

Values Delivered

Advancing the current state of knowledge, supporting offshore activities, forecasting risks to maintain environmental integrity that may evolve with a changing climate.

Improved characterization of metocean and seabed related hazards will help to prevent catastrophic incidents as human and engineered systems integrate with natural systems in the offshore environment.

Products available at https://edx.netl.doe.gov/offshore/