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SMART Task 6 – Team Organization
Experienced team with diverse, complementary backgrounds
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SMART Task 6 – Overview
Motivation, vision, and Phase I goals

Motivation and Vision

• Strategic advancement in 
unconventional reservoir development

• Fundamentally change how we visualize 
and control fractures and faults with 
initial application to stimulation and 
production

• Leverage data (measurements), physics-
based models, and machine learning 
(ML) to visualize fracture networks and 
concomitant fluid flow

• Seamless integration from stimulation to 
production to inform well, drill-spacing 
unit (DSU), and field management 
decisions
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Phase I Goals

• Use the Hydraulic Fracturing Test Site 
(HFTS-1) as our test case

• Generate physics-based datasets for 
microseismic, distributed acoustic 
sensing (DAS), and production (oil, gas, 
and water rates)

• Create ML-based proxy-models to 
rapidly estimate the fracture network 
and generate the production forecast

• Integrate proxy-models into powerful 
visualizations that inform operational 
decision-making



SMART Task 6 – Workflow
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Pressure Monitoring
• Pumping rate
• Treatment pressure
• Production pressure
• Offset well pressure

Geophysical Monitoring
• Microseismic
• Fiber (DAS)

Initial Static Model
• Wellbores
• Lithology
• Natural fractures (if present)
• Basic properties
• Number of stages
• Cluster spacing
• Cluster count

Production Monitoring
• Oil, gas, and water
• Surface pressure
• Bottomhole pressure

Pre-frac Understanding
Stimulation

(Hydraulic Fracturing Operations)
Short Time-Series

(Evolution During Stimulation)

Physics-Based
• Fracture network
• HF geometry
• HF properties

Visualizations
• Fracture network
• Production forecast
• Well drainage volume 

Longer Time-Series
(Production Phase)

Physics-Based
• Oil, gas, and water
• Bottomhole pressure
• Drainage volume (FMM)

LLNL geomodel (.vtk)



EERC/TAMU geomodels (Petrel)

EERC / TAMU

LLNL / LBNL / LANL / FACT / NETL

Given

(Measured)

ML-based Proxy-Models
• Fracture network
• HF geometry
• HF properties
• SRV: Volume and extent

FACT / LLNL / LBNL / LANL / NETL

FACT / LBNL /

LANL / NETL

LANL /

LLNL

ML-based Proxy-Models
• Oil, gas, and water
• Bottomhole pressure
• Drainage volume

EERC /

TAMU

Given (Measured)

Q2-21

Q2-21

Q3-21

Q3-21
Q4-21

Q3-21

Given

(Measured)

Q1-21

Q4-20
Q1-21

Q4-20
Q1-21

Q1-21
Q2-21

Real-Time Stimulation Feedback
• Multi-level data driven fracture 

network image for rapid 
decision making

Additional Monitoring
• Flowback/DFI Data
• Tracer Data                   
• Pressure interference testing
• Production pressure

NETL

NETL



Synthetic Microseismic Models

4SM_05

4SM_35

6SU_05

6SU_35

• A growing database of synthetic data

• Supplements real field data from HFTS-1

• Current focus is upon transferring data to 
ML practitioners to support ML training

Training and testing data for ML-based fracture network modeling



Rapid Visualization of Hydraulic Fractures
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Seismic image of the final HF

Trained on the GEOS simulations, an all-convolutional network with attention will track 
the growth of an individual HF in the MEQ density to refine the final fracture image.at 25 min

2 hr

3.5 hr

Microseismic constrained by low-frequency DAS and 4D cross-hole seismic



ML-based ROM for Estimating the SRV from Microseismic
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Data-driven reduced-order models (ROMs) for monitoring the effectiveness of hydraulic fracturing

Data-Based Models

Physics-Based Models

SRV = f(Stage, Step, Slurry Volume, 
Pump time cum., S13, S16)

function Mathematical Form
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Combining Fast Marching (FM) and ML

• Leverage speed of Fast Marching (FM)-based 
flow simulation for rapid history-matching (2-3 
orders of magnitude faster than commercial 
numerical simulators) and generate training 
data in high contrast/fractured media

• Use Deep Learning and Image Compression 
for visualizing evolution of well drainage 
volumes and hydraulic/natural fracture 
interactions

• Near real-time performance prediction of 
selected metrics (e.g., production and 
pressure response) using machine learning
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Rapid visualization and performance predictions

Illustration of drainage volume visualization in 
the presence of hydraulic and natural fractures 
using FM-based flow simulation.



Unity Visualization Interface Prototype

• LLNL implemented the 
necessary features to 
include subsurface data in 
the Unity gaming engine

• Exploring new ways to 
visualize data that leverage 
the engine

• Next steps will be to plan 
for accommodating ML 
outputs

The prototype developed by Task 6 will explore novel visualizations and demonstrate near-
real-time workflows that utilize ML.

Insert the second, microseismic video here



SMART Task 6 – Summary
Key accomplishments and December 2021 targets

Key accomplishments

• Assimilated HFTS-1 datasets into a single Task 6 resource

• Conducted physics-based modeling of stimulation and production to create 
training/testing datasets for ML-based proxy-models

• Generated preliminary ML-based proxy-models that show potential for rapidly 
visualizing the SRV, fracture network properties, and associated production

• Created exploratory visualizations in Unity for the proof-of-concept platform

December 2021 targets

• Finalize ML-based proxy-models for the fracture network and production

• Finalize visualizations in Unity and input/output data needs

• Integrate the proxy-models into the visualization platform and test the system
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SMART Task 6 – Phase II
Linkages to other activities under the Carbon Storage Program

• Our visualization prototype can inform novel methods for Task 1:

◦ Fracture visualization for Carbon Storage and other subsurface applications

◦ Communicating real-time microseismic, including uncertainties

◦ Exploring how to clearly communicate timely positive and negative projected 
outcomes

― Long-term production projections

― Risk of fault activation or fracturing out of zone

• ML workflows for real-time interpretation of microseismic can be integrated 
with other capabilities under Phase II with relevance to Carbon Storage
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SMART Task 6 – Phase II (cont.)
High-level, long-term objectives

• Identify one or more projects to test the Phase I system using field data

• Engage the field site operator(s) and execute data sharing agreements 
and other necessary contracts

• Plan and execute data acquisition for the field test site and evaluate the 
performance of the Phase I system

• Document the field performance and make recommendations

• Additional objectives will be developed during the Phase II planning 
meeting with the Task 6 team and SMART Advisory Board (August 13, 2021)
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Questions?
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Thank you!

Nick Azzolina (nazzolina@undeerc.org)

Joe Morris (morris50@llnl.gov)
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Supplemental Slides
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• The supplemental slides highlight additional work conducted by the Task 6 organizations 
over the preceding quarter that were not included in the main presentation (due to time 
constraints).

• Please consult the slide notes for additional details about where to find more information 
about each slide.



Low Frequency Fiber Optics for Fracture Properties

1. DDM Modeling Allows Rapid Generation of HF Basis Functions for LF DAS:

2. DDM Fracture Database are Used to Train our ML Algorithm & Invert Fracture Properties:
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Distributed Acoustic Sensing from Fiber Optics – Low Frequency Geomechanical Changes with Precision

Low-Frequency (LF) DAS ResponseDDM Generated Hydraulic Fractures (HF)

Key LF DAS Fracture ML Inversion Parameters:

• Number of fractures

• Propagation velocity

• Length

• Height

• Width

• Azimuth

Example ML Inversion for 
Number of Fracture Hits:
1-3 Fractures – Easy
4-6 Fractures – More difficult



ANNs to Predict HFTS-1 Site Parameters
Slide 1 of 2
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Slide 2 of 2
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The ML inverse model is an 
artificial neural net (ANN) 
that can predict the site 
parameters (α , M) based on 
short term production data.

Abundant synthetic data are generated 
for Library 1, with parameter ranges 
initially constrained by several high-
fidelity simulations. The training data is 
in the form of historical production as 
predicted by the ROM.

Forward models are generated for 
predicting site behavior (e.g., long-term 
production, EUR, reservoir depletion) 
based on re-training the reduced-order 
models (Library 1) with the high-fidelity 
models (Library 2).

Transfer Learning Phase: the ANN 
trained with synthetic data from 
low-fidelity models (ROM) is re-
trained with synthetic data 
generated from high-fidelity models.

10,000 model runs

150 model runs

High fidelity models are 
generated in dfnWorks using site 
parameters constrained by 
subsurface data (fracture density, 
orientation, height, aperture 
etc.). Flow simulations are then 
run upon varying the site 
parameters in order to generate 
scenarios in Library 2.

Fast but less accurate reduced order 
models are created through ML; this can 
be accomplished through graph theory in 
combination with other physics-informed 
models (e.g., analytical model of Patzek
et al 2013).

Analyze subsurface data to 
constrain physical properties of 
the reservoir (fracture networks 
and matrix) and transient in situ 
stress and fluid conditions for 
model construction. 

ANNs to Predict HFTS-1 Site Parameters



Visualizing Connectivity Between
Hydraulic and Natural Fractures
Slide 1 of 2
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Visualizing Connectivity Between
Hydraulic and Natural Fractures
Slide 2 of 2
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LANL’s dfnWorks will explore the connectivity of fracture networks, and its impact on flow and transport through the stimulated rock volume, through graph-based 
reduced order models (ROMs). This method increases computational efficiency while retaining the accuracy of key quantities of interest (e.g., primary flow channels), 
thereby allowing for real-time visualizations and decision-making. In the examples below, the topology (connectivity) is captured as vertexes (fractures) and edges 
(intersections between fractures). The section of the horizontal lateral (blue) contains three hydraulic fractures (red), with the natural fractures in black. The graph-based 
ROMs can evaluate the connectivity and flow properties of different degrees of connectivity as shown below. The “first connection” only considers those natural fractures 
that directly intersect the hydraulic fractures. The second connection includes the natural fractures connected to the first connection, and so forth. Through production 
history matching, this method can estimate the subset of natural fractures that contribute to the active flow network in stimulated reservoirs.

Natural fractures that directly 
intersect the hydraulic fractures.

First connection fractures plus natural fractures 
that intersect the first connection fractures.

First and second connection fractures plus natural 
fractures that intersect the first and second 
connection fractures.

Graph 
representations

These topological models 
can be further reduced to 
display only the “fracture 
backbones”, i.e., the 
primary flow paths
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HFTS-1 Dataset 
• Microseismic Data        Fracking/Pumping Data      Flowback/DFI Data                   Well layout/distance
• Tracer Data                   Production data                   Pressure interference testing    Log/Core Data

NETL: Multi-Level Data Driven Fracture Network Visualization

Details were reported in manuscript for URTeC, 2021

Fracture network segmental 
level of ML testing 



Workflow: Drainage Volume Visualization
Using Machine Learning and FMM
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1. Generate Training Method Data Using Fast Marching

• Parameter identification, screening, and sampling history-matched 

models

• Generating training data using Fast Marching-Based Rapid 

Simulation

2. Image Compression and Training ML models

• Autoencoder/Decoder for compression

• Deep Learning for Regression model

3. Deploy and Predict

• Given well response, visualize drainage volume evolution

• Predict future well performance


