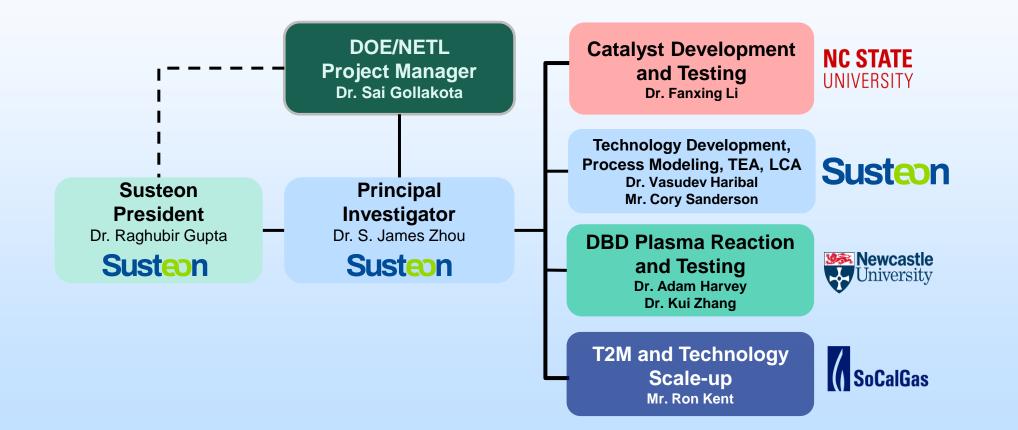
Plasma Assisted Catalytic Conversion of Carbon Dioxide (CO₂) and Propane to Propylene and Carbon Monoxide (CO)

DE-FE0031917

Dr. S. James Zhou, Susteon Inc.

Susteon


U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

Title	Plasma Assisted Catalytic Conversion of Carbon Dioxide (CO ₂) and Propane to Propylene and Carbon Monoxide (CO)
Award No.	DE-FE0031917
Period of Performance	10/01/2020 - 09/30/2022
Project Funding	DOE: \$999,722 Cost-Share: \$255,642
Project Participants	Susteon Inc., North Carolina State University, Newcastle University, SoCalGas
DOE/NETL Project Manager	Dr. Sai V. Gollakota

Team Members and Organizational Structure

Project Objectives

Utilize CO_2 as a soft-oxidant with propane and ethane in a catalytic nonthermal plasma reactor to produce propylene/ethylene

- Modular design
- Negative CO₂ footprint of the overall process
- Production of 'green' carbon monoxide with large market potential
- Commercially competitive production costs due to low capex

Background Information - Steam Cracking Process for Olefin Production

 C_2H_6 or C_3H_8 or Naphtha \longrightarrow $C_2H_4/C_3H_6 + x.H_2$

 $\Delta H_{298K} = +134 \text{ kJ/mol}$ Ethane to ethylene

 $\Delta H_{1048K} = +319.6 \text{ kJ/mol}$ Naphtha to ethylene

Source of olefins (via steam cracking)	CO ₂ Emissions
Ethane	1.2 kg/kg
Propane	1.4 kg/kg
LPG	1.7 kg/kg
Naphtha	2.2 kg/kg

Alternate routes to produce olefins from these sources are needed to reduce their GHG footprint.

```
-P. Eisele and R. Killpack, "Propene," in Ullmann's Encyclopedia of Industrial
Chemistry (2011)
-H. Zimmermann and R. Walzl, "Ethylene," in Ullmann's Encyclopedia of
Industrial Chemistry (2009)
-Ren, T et.al., Energy 31.4 (2006): 425-451.
```

• Feed is a mixed stream of ethane and steam.

- A high-temperature reactor $(750^{\circ} 875^{\circ}C)$
- Reactor residence times of 0.1–0.5 s
- Reaction limited to practical single-pass ethane-conversion of 67–70% and an ethylene yield of around 55%
 - Equilibrium limitation and coke formation
- Periodic shut down and regeneration with air to avoid coke build-up
- Highly endothermic: Total energy demand between 15 and 25 GJ/t ethylene
- CO₂ intensive: 1–2 t CO₂/t ethylene
- Considerable amount of NO_x emissions

5

CO₂ Oxidative Dehydrogenation (CO₂-ODH) of Alkanes

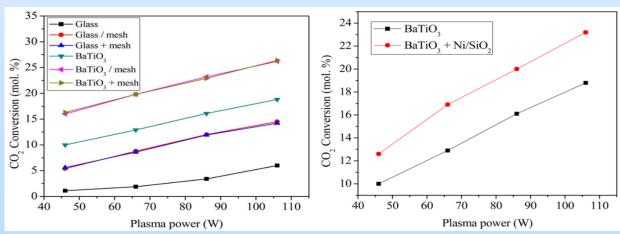
• high temperatures

• safety concerns

• need for pure oxygen

• higher energy losses

• Mildly endothermic and is


catalyzed by a variety of catalysts

Oxidative Dehydrogenation (ODH) using O ₂								
$C_2H_6 + 0.5 O_2 \rightarrow C_2H_4 + H_2O$	$\Delta H_0 = -105 \text{ kJ/mol}$							
Oxidative Dehydrogenation (ODH) using CO_2 $C_3H_8 + CO_2 \rightarrow CO + C_3H_6 + H_2O$	$\Delta H_0 = +60.3 \text{ kJ/mol}$							

- Consumption of CO₂ as a feedstock
- CO₂ reduction to CO works in tandem with alkane dehydrogenation to its corresponding olefin
- CO₂-ODH catalysts perform the dual function of activating both the hydrocarbon and CO₂.
- Supported Ni-Fe, Cr and Ga systems are promising.

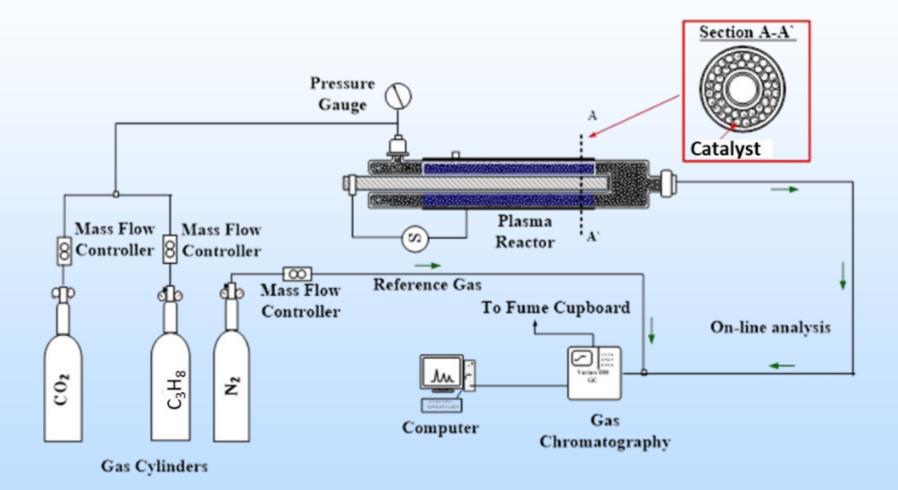
Plasma-Assisted Catalytic Conversion of CO₂

- Catalyst enables interplay of gas phase and gas-solid reactions on the catalyst surface
- Dielectric-barrier discharge (DBD) is a form of non thermal plasma
 - average temperature of the energetic electrons is in the range of 10,000– 100,000 K
 - actual gas temperature remains near ambient
- CO₂ conversion increases with plasma power over glass and BaTiO₃ beads.
- Addition of Ni/SiO₂ catalyst increases conversion by almost 1.5 times.
- Absence of plasma led to no CO₂ conversion

Technical Approach and Key Milestones

- Catalyst preparation, characterization, and evaluation under thermal and plasma conditions
 - Focus on the formulation and synthesis conditions for maximum alkene yield and catalyst stability
- CO₂ oxidative dehydrogenation in the plasma reactor with and without catalyst
 - Obtain optimal process conditions
- Process modeling, TEA and LCA
 - Determine process economics and CO₂ footprint
 - Design pilot-scale plasma reaction system for the next phase of technology development

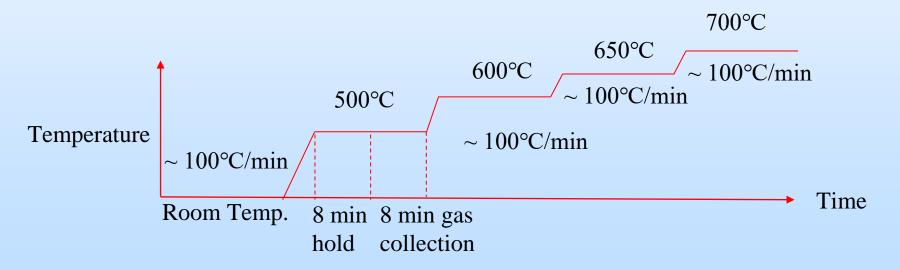
Key Milestones


- Demonstrate >50% propane and CO₂ conversion and at least 80% propylene selectivity
- Demonstrate >50% ethane conversion and CO₂ conversion and at least 80% ethylene selectivity
- Achieve <25% catalyst deactivation during 24 hours of continuous testing

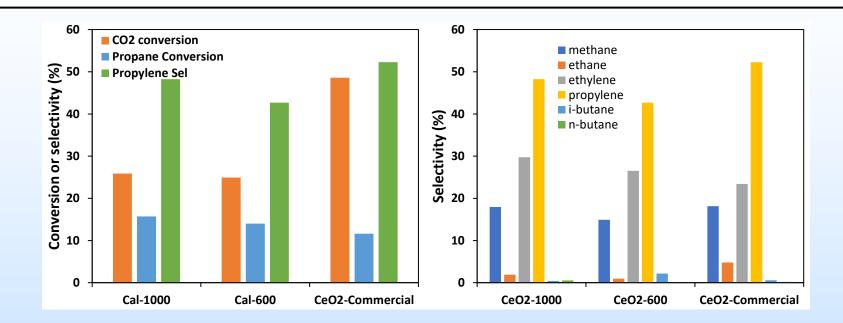
Success Criteria

Parameter	Criteria	Testing Tool
Production costs of ethylene, propylene and carbon monoxide	\leq 20% of the market price	Final TEA
CO ₂ utilization potential (with renewable power)	\geq 0.92 kg CO ₂ /kg olefin (70% ethylene, 30% propylene)	Final LCA
Total CO ₂ avoidance	\geq 2.12 kg/kg olefin	Final LCA
Utilization of distributed CO ₂ resources	Design of a modular system	Design package

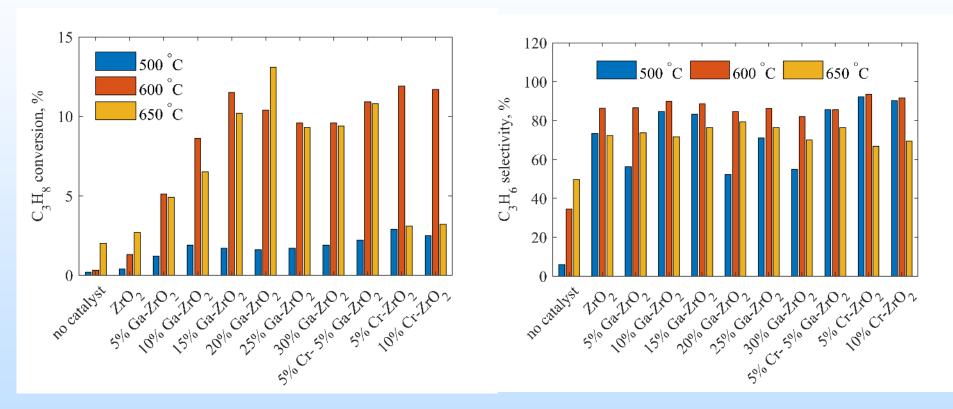
Plasma Test Equipment



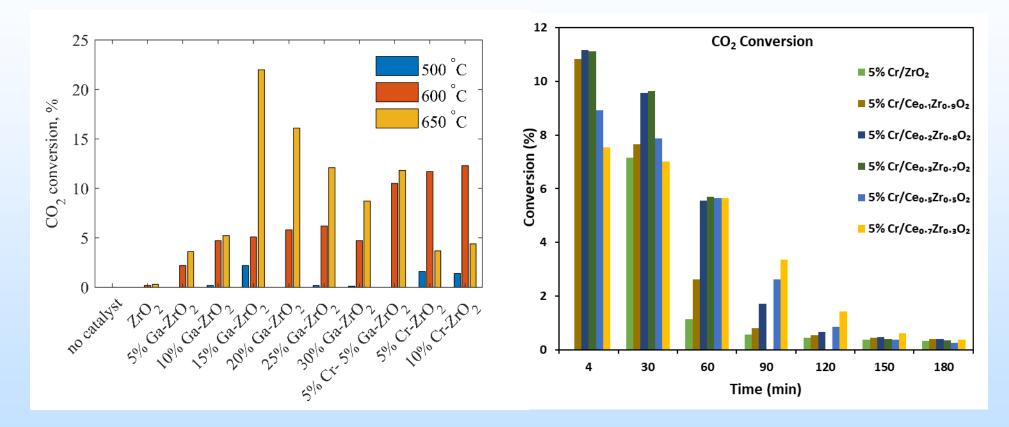
Catalyst Synthesis and Testing


- Sol-gel CeO₂ supported N₁Fe₃ catalyst
- Ce dopant stabilized $Cr/Ce_XZr_{1-X}O_2$ catalyst
- Ga-ZrO₂ Catalyst

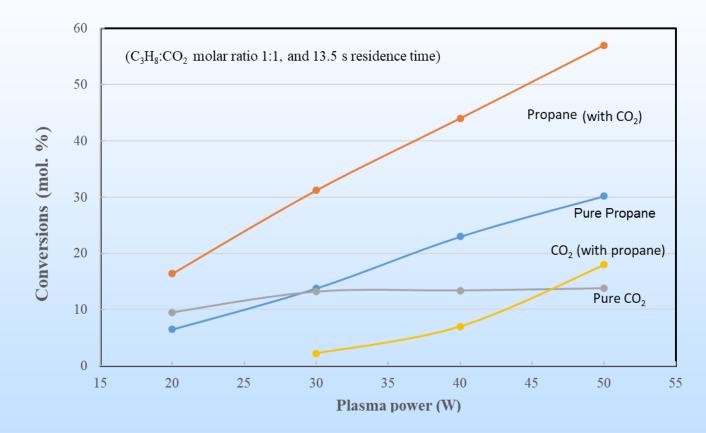
Testing Protocol: 20 sccm Ar, 10 sccm propane, and 10 sccm CO₂


Effect of Catalyst Support

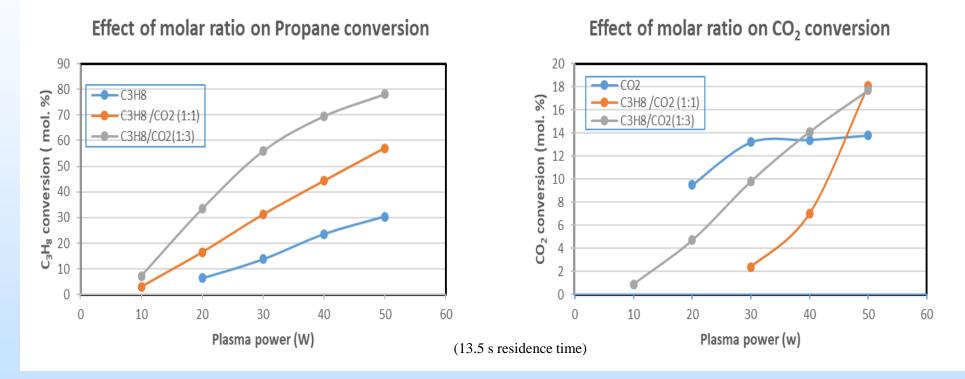
Temperature (°C)	CO ₂ conv. (%)	Propane conv. (%)	Methane sel. (%)	Ethane sel. (%)	Ethylene sel. (%)	Propylene sel. (%)	i-Butane sel. (%)	n-Butane sel. (%)
Cal-1000	25.9	15.7	18.0	1.9	29.7	48.3	0.4	0.6
Cal-600	24.9	14.0	14.9	1.0	26.5	42.7	2.2	0.0
CeO2-Commercial	48.6	11.6	18.1	4.8	23.4	52.3	0.6	0.2


Sol-gel CeO₂ supported NiFe₃ catalyst exhibits the highest propylene yield of 7.6% at 700°C

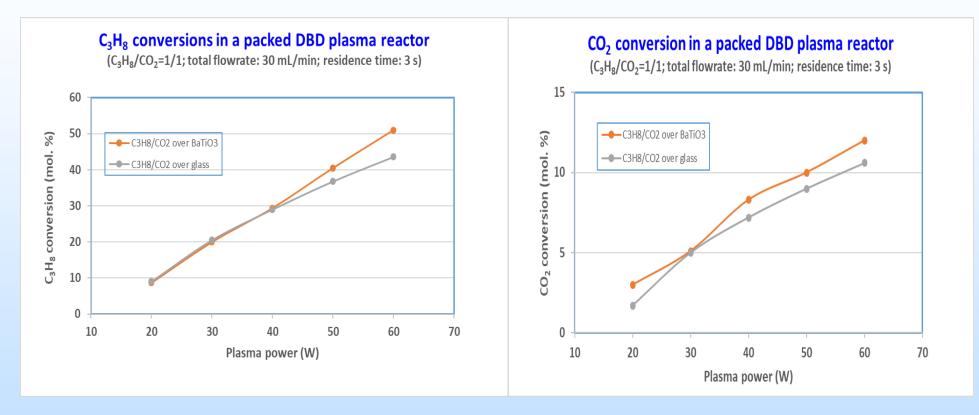
C₃H₈ Conversion and C₃H₆ Selectivity for Ga-ZrO₂ Catalysts


- C_3H_8 conversion is about 15-20% for the Ga-ZrO₂ catalysts.
- C₃H₆ selectivity is similar among the Ga-ZrO₂ catalysts.

CO₂ Conversion for Ga-ZrO₂ and Cr-ZrO₂ Catalysts


- 15-20% Ga-ZrO₂ can provide high CO₂ conversion which is around 1.5 times higher than Cr-ZrO₂ catalysts.
- 10-30% Ce doping into ZrO₂ support enhances both propane and CO₂ conversion.

Effect of Plasma Power on Propane and CO₂ Conversion


- Presence of CO₂ enhances propane conversion without a catalyst.
- Both propane and CO₂ conversion increase with increasing plasma power.

Effect of Propane / CO₂ Molar Ratio on Conversion

- Presence of more CO₂ enhances both propane and CO₂ conversion without a catalyst.
- Both propane and CO₂ conversion increase with increasing plasma power.

Effect of Packing on Propane and CO₂ Conversion

- BaTiO₃ beads produce higher propane and CO₂ conversions at >40W than glass beads.
- H₂/CO ratio is comparable over BaTiO₃ beads (about 1.7) and glass beads (about 1.6).

Plans for Future Testing

- Initiated catalyst synthesis for testing in plasma reactor
- Introduce catalyst into the plasma reactor, and explore the effect of catalysts on the conversion and selectivity CeO₂ first, followed by various supported metal catalysts
- Optimization of selected catalysts for plasma assisted CO₂-ODH
- Optimization of plasma process conditions to maximize CO₂ and propane conversion as well as propylene and CO yields
- Validation of catalyst stability in long-term testing conducted for up to 100 hour
- Completion of TEA and LCA to show process economics and CO₂ reduction potential
- Completion of technology gap analysis and updated TMP

Plans for Commercialization

- Develop process design and modeling
- Plasma reactor scale up
- Scale-up of the catalyst
- Explore pilot testing of plasma assisted CO₂ reaction system
- Set up partnerships with key stakeholders

Summary Slide

- Initiated synthesis, characterization and testing of various supported metal catalysts
- Some catalysts show greater than 90% propylene selectivity
- Plasma testing shows greater than 80% propane conversion without a catalyst
- Feasibility of the CO₂-ODH reaction with plasma demonstrated at much lower temperatures than conventional processes
- Presence of CO₂ enhances propane conversion in the plasma reactor

Acknowledgement

Financial and Technical Support

- Department of Energy (DOE/NETL)
- DOE Project Manager: Dr. Sai V. Gollakota
- SoCalGas

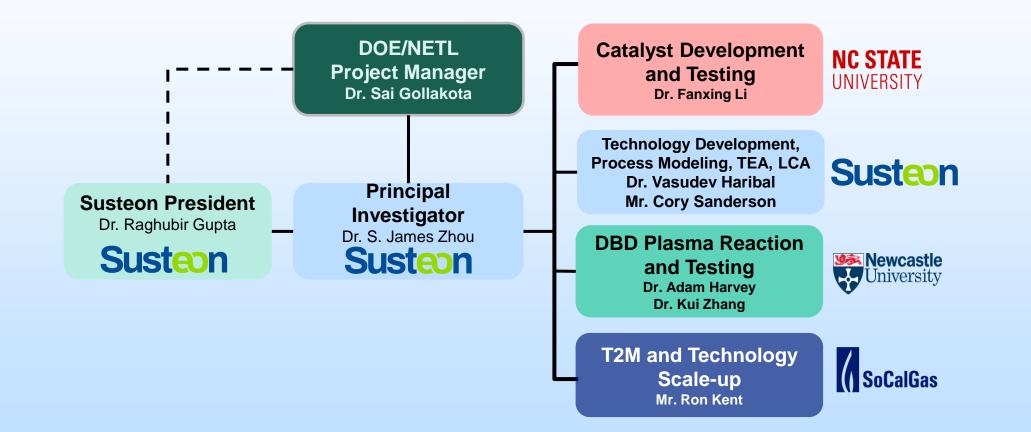
- North Carolina State University
- Newcastle University

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031917.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



Appendix

• These slides will not be discussed during the presentation but are mandatory.

Team Members and Organizational Structure

Project Timeline

		0	N	D	J	F	м	A	M	J	J	A	8	0	N	D	J	F	м	A	M	J	J	A	8
Project Timeline										10)/01	/202	20 -	- 09/	/30/	202	2								
	Assigned Resources	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Task 1 - Project Management and Planning	Susteon																								
Subtask 1.1 - Project Management																									
Subtask 1.2 - Technology Maturation Plan																									
Milestone 1: Kickoff meeting and submission of revised PMP				٠																					
Task 2- Catalyst Preparation, Characterization, and Testing	NCSU & Susteon			٠																					
Subtask 2.1 – Catalyst Preparation																									
Subtask 2.2 – Catalyst Testing for CO2-ODH Activity and Selectivity																	1								
Subtask 2.3 – Catalyst Forming																									
Milestone 2: Successful preparation, forming and testing CO2-ODH catalysts											•						1								
TTask 3.0 - Experimental Testing of Plasma Assisted Catalytic CO ₂ -ODH	NU																								
Subtask 3.1 - Plasma Reactor Design and Setup																									
Subtask 3.2 - CO ₂ -ODH Process Performance Measurements without Catalyst																	1								
Subtask 3.3 - CO ₂ -ODH Process Performance Measurements with Catalyst																									
Subtask 3.4 - Catalyst Stability																									
Milestone 3: Successful obtaining process conditions for maximizing CO ₂ conversion																									
and catalyst stability												•					1								
Task 4.0 - Process Modeling	Susteon																1								
Milestone 4: Successful development of process model for process heat and material													٠												
balances																							<u> </u>		_
Task 5.0 - Catalyst Optimization	NCSU & Susteon																								
Milesteon 5: Successful optimization of catalyst for CO ₂ -ODH																			•						
Task 6.0 - Optimization of Process Conditions	NU																								
Milestone 6: Successful optimization of plasma process conditions to maximize CO ₂																							1		
and propane conversion as well as propylene and CO yields																	1					•			
Task 7.0 - Long-Term Testing	NU																								
Milestone 7: Successful validation of catalyst stability in long-term testing conducted for																	1							٠	
up to 100 hours																							┝──┥	-	_
Task 8.0 - Final Techno-Economic and Life Cycle Analyses	Susteon					<u> </u>	_												-						
Subtask 8.1 - Process modeling						-	-		<u> </u>																
Subtask 8.2 - TEA, LCA, and Technology Gap Analysis					-	<u> </u>	-												-						
Milestone 8: Successul completion of TEA and LCA to show process economics and																	1								•
CO ₂ reduction potentials																	1								