Plasma Assisted Catalysis for CO₂ Utilization DE-SC0019664

Yue Xiao Advanced Cooling Technologies, Inc.

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview (1/2)

- Funding and Performance Dates
 - Source: DOE
 - Phase I: \$149,998 (02/2019 11/2019)
 - Phase II: \$1,049,923 (04/2020 04/2022)
- Project Participants
 - Advanced Cooling Technologies, Inc (ACT): Yue Xiao (PI), Chien-Hua Chen, Jay Uddi, Patryk Radyjowski, Josh Kintzer
 - Lehigh University: Prof. Jonas Baltrusaitis

Project Overview (2/2)

- Overall Project Objectives
 - Plasma-Assisted Dry Methane Reforming (PADMR) $CO_2 + CH_4 = 2H_2 + 2CO$
 - Improve reactor performance
 - Evaluate coking formation and decoking
 - PADMR modeling
 - Scaling analysis and scaled-up reactor design
 - Industrial process flow analysis

Technology Background (1/2)

- Current: Steam Methane Reforming (SMR) H₂O+CH₄ \rightarrow 3H₂+CO; H₂/CO=3, Δ H=206 kJ/mol
- Dry Methane Reforming (DMR)

 $CO_2+CH_4 \rightarrow 2H_2+2CO; H_2/CO=1, \Delta H=247 \text{ kJ/mol}$

- DMR advantages:
 - Consumes two greenhouse gases
 - Better and tunable H_2/CO ratio

- DMR disadvantages:
 - High temperature
 - Coking

Technology Background (2/2)

- Plasma-Assisted Dry Methane Reforming (PADMR)
 - Non-thermal plasma to sustain reactions
 - Electrons obtain energy from electric field
 - → High energy electron (~10⁴ K scale) but room temperature gas (300–400 K)

Sheng et al. *Plasma Chemistry and Gas Conversion* (IntechOpen, 2018).

- Electrical energy consumed by non-thermal plasma $(E) = \text{Electron energy } (\Delta G) + \text{Energy loss}$
- Δ*G* passed from electron to molecules $CH_4 + e \rightarrow CH_3 + H^ CH_3 + H + CO_2 \rightarrow 2H_2 + 2CO$
- Enables low temperature DMR reactions
- Catalysts for synergetic effects

Technical Approach/Project Scope (1/2)

- Dielectric barrier discharge (DBD) plasma reactor

- Low temperature and atmospheric pressure
- High conversion (>90%)
- Suitable for industrial scale
- Catalysts: Efficiency ↑

Snoeckx & Bogaerts, *Chem. Soc. Rev.*, **46**, 5805-5863 (2017).

Technical Approach/Project Scope (2/2)

- Project Scope
 - Achieve high conversion and syngas production
 - Increase energy efficiency
 - Scaled-up reactor design
 - Plasma chemistry modeling \rightarrow Reactor and process condition optimization
 - Industrial process modeling \rightarrow Economic analysis

– Goal

- Develop a economically viable PADMR-involved process
- Risks and Mitigation Strategies
 - Lower initial efficiency
 - Catalysts
 - Reactor and process optimization
 - Utilize waste heat and cheap electricity

Progress and Current Status of Project (1/8)

Upgraded DBD plasma reactor: Parallel plate \rightarrow Cylindrical

Phase I: Parallel plates reactor

Phase II: New cylindrical reactor

- Reduced bypass flow
- Uniform electric field
- Flexible reactor configuration

Progress and Current Status of Project (2/8)

Testing Setup

GC-TCD: Gas Chromatography – Thermal Conductivity Detector MS: Mass Spectroscopy

Progress and Current Status of Project (3/8)

Further improved conversion and syngas production DMR: $CO_2 + CH_4 \rightarrow 2H_2 + 2CO$

- Flow rate \downarrow , Conversion & production concentration \uparrow
- Compared with Phase I:

Progress and Current Status of Project (4/8)

Further improved conversion and syngas production DMR: $CO_2 + CH_4 \rightarrow 2H_2 + 2CO$

Progress and Current Status of Project (5/8)

Parametric studies:

Alumina catalyst and varying CO₂:CH₄ ratio

- 20% Ni/ γ -Al2O3 tested
- Concentration crosses at ~45%
- Selectivity crosses at ~65% CO_2 .
- Low initial concentration
 → higher conversion
- $\begin{array}{c} CH_4 \text{ promotes } CO_2 \text{ conversion} \\ \hline \end{array}$ Tunable syngas ratio
- No significant performance improvements for catalysts
 - Reduced residence time
 - Low temperature

Progress and Current Status of Project (6/8)

Plasma chemistry modeling: 1D CO₂ conversion

Aerts et al., Chem. Sus.. Chem., 8(4), 702-716 (2012).

After 0.3 s:

• CO 10^{16} /cm³ scale \rightarrow Match with previous study

13

• Longer residence time to be performed

Progress and Current Status of Project (7/8)

Reduced CO₂ modeling \rightarrow Detailed DMR Modeling

Molecules	Charged Species	Radicals	Excited Species					
C3H8, C3H6,	C2H6+, C2H5+,	C4H2, C3H7,						
C2H6, C2H4,	C2H4+, C2H3+,	СзН5,						
C2H2, CH4	C2H2+, C2H+,	C2H5, C2H3, C2H,						
	CH5+, CH4+,	CH3, CH2, CH						
	CH3+, CH2+, CH+							
CH ₂ CO, CH ₃ OH,		CHO, CH2OH,						
CH3CHO,		CH3O, CH3O2,						
CH3OOH,		C2HO, CH3CO,						
C2H5OH,		CH2CHO, C2H5O,						
C2H5OOH, CH2O		C2H5O2						
	C2	C, C2						
	+, C+							
O3, O2	O3-, O4-, O4+,	0	O(1D), O(1S),					
	02-, 02+,0+, 0-		O2(a1), O2(b1)					
H2	H2+, H+, H–, H3+	Н	H(2P), H2(V),					
00 00		<u> </u>	$\frac{H_2(E)}{CO_2(E_1)}$					
CO2, CO	CO2+, CO+, CO3-, CO4-, CO4+,	020	CO2(E1), CO2(E2)					
	C04-, C04+, C2O4+, C2O3+,							
	C2O4+, C2O3+, C2O2+							
H2O, H2O2	H2O+, H3O+, OH+,							
1120, 11202	OH-	102, 011						

Koelman *et al. Plasma Process. Polym.* **14**, 1600155 (2017). Wang *et al., J. Phys. Chem. C* **122**, 8704–8723 (2018).

- Includes hydrocarbons and many excited species
- Total 75 species and >1000 reactions
- Data collected from multiple sources
- Currently tuning for convergence

Progress and Current Status of Project (8/8)

Process Flow Analyses: SMR case as baseline

- Conventional and hybrid SMR modeled
- Low electricity cost need to be economically competitive
- Results published on King et al., Fuel 304, 121328 (2021).
- Currently developing DMR analysis model.

Plans for Future Testing/Development/Commercialization

- Further improvement of efficiency under high conversion
 - Achieved through reactor configuration, catalysts, and power source setup

Mei & Tu, J. of CO2 Utilization **19**, 68–78 (2017)

Reactor Configuration

Neyts, & Bogaerts, J. Phys. D. Appl. Phys. 47, 224010 (2014).

Ru/CeO₂ nanocubes Ranganathan et al. *Int'l. J of Energy Eng.* **10**(3), 67-79 (2020).

Conventional and Nanoscale Catalysts

Nanosecond Pulse Source

Burst Signal

16

Plans for Future Testing/Development/Commercialization

Scale-up design:

- Twin reactor for consecutive production and decoking
- Currently designing scaled-up reactors

Summary

PADMR:

- Consumes two greenhouse gases \rightarrow Produces syngas
- Demonstrates high conversion and syngas production
- Efficiency can be further improved

1) The new reactor, compared with Phase I effort:

- Total conversion 59% \rightarrow 70%
- Maximum CH₄ conversion: 78% \rightarrow 92%
- Efficiency improved by 35%
- 2) 1D and 2D Plasma chemistry modeling
 - Predict the experimental results
 - Investigate the effects of the dielectric constant
- 3) Industrial process modeling
 - Baseline case with SMR process

Thank you!

Appendix

Organization Chart

Gantt Chart

Task Description		Quarter								
		1	2	3	4	5	6	7	8	
Task 1: Evaluate increase the energy efficiency using a packed bed, plasma with catalysts and nanosecond pulses		Х	х	х	x	х				
Task 2: Evaluate extent of coke formation in extended duration tests using our plasma DMR reactor				х	x	х				
Task 3: Perform lab tests and evaluate conversion and selectivity using simulated feedstocks that may contain steam, nitrogen, and/or impurities						х	х			
Task 4: Develop a predictive tool for plasma DMR by combining our CH ₄ and CO ₂ plasma chemistry models in one code including coupling reactions		х	х	х	x					
Task 5: Improve scaling analysis and develop a scaled- up reactor design					x	х	х	х		
Task 6: Perform process flow analyses and optimization studies							х	х	х	
Reporting	Briefings	Х	Х	Х	Х	Х	Х	Х	Х	
	Midterm/ Continuation Report				x					
	Final Report								Х	

22