CO₂ to Methanol Using Plasma Catalysis at Atmospheric Pressure

DE-SC0019939

Sivakumar Vasireddy Advanced Energy Materials LLC

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

Funding (DOE SBIR) Phase-I: \$196,990 (07-01-2019 to 03-31-2020) Phase-II: \$1.15 MM (08-24-2020 to 08-23-2022)

Project Participants Advanced Energy Materials LLC E³Tec LLC TechOpp Consulting

Project Goal & Objectives

Goal

Develop skid mounted unit solutions for on-site production of CO/Syngas and mini GTL plant for methanol production using synergy of plasma and catalyst.

Objectives

- Economical conversion of CO₂ at modular scale to CO (1 10 m³/h), syngas and methanol (1 - 3 ton/day).
- Optimize the tri-reforming process for throughput (lpm/kW) using CO₂, CH₄, H₂O, and O₂, with conversion >80% for syngas H₂/CO > 2.
- Demonstrate the process scaleup with 3 kW plasma and catalyst lifetime for 100 h.
- Develop integrated PFD for mini modular plants for CO and methanol.
- Establish conversion and throughput for economical production at modular scale.
- Process validation with gas feed from a fermenter.

Technology Background

The most significant challenge in CO₂ conversion to CO / Syngas / methanol:

CO₂ is thermodynamically and kinetically inert and its conversion requires high pressures and temperatures.

Of the above three routes, syngas to methanol (CO, H_2) is commercially implemented using thermal catalysis, but economical only at large scale.

Direct hydrogenation of CO_2 with high rates and selectivity to methanol requires high pressures from 100 to 300 bar.

Improved catalysts and pathways are critically needed for CO_2 to chemicals conversion.

CO₂ to Methanol Production Technologies

- Direct CO₂ hydrogenation
- Demo pilot plants in Iceland, Japan, Korea using thermal catalysis at high pressures and temperatures
- No commercial plants
- Indirect CO₂ hydrogenation
- Dry reforming of CH_4 and CO_2 to syngas followed by methanol production
- Low lifetime of catalysts limit the commercial implementation
- Electrochemical Conversion
- Low activity and Low stability of electrocatalysts
- Low solubility of CO₂ in the reaction media
- Lab scale, but of interest due to use of H₂O in place of H₂
- ADEM's Plasma catalysis (PlasCat[™]) US patent 63/070,197
- No external heat and low-pressure (< 7 bar) operation
- Synergy between plasma and catalysis
- Low capital cost, easy to scaleup and build mini GTL plants

Plasma Catalysis

Reduces activation barrier - Plasma excitation can in principle bypass kinetic

bottlenecks of thermal catalytic transformations.

- Enhance net reaction rates and conversions.
- Plasma heating of gas.
- Surface temperature of catalyst is high while bulk temperature is low.
 - 1. ACS Catal. 2020, 10, 6726-6734
 - 2. Chem. Rev. 2015, 115, 13408-13446

ADEM's PlasCatTM Process

Warm plasmas such as microwave plasma (MW) can simultaneously provide:

High degree of non-equilibrium and a high electron density which translates to efficient reactor productivity.

Selectively populate certain vibrationally excited species might be very promising for CO_2 conversion.

Plasma activates gas by energetic electrons instead of heat, allowing the thermodynamically difficult reactions such as CO₂ conversion to occur with reasonable energy costs.

Adsorption Heat Heat Surface reaction (a) Thermal catalysis (b) Plasma-catalysis

Synergism of plasma excitation of CO_2 and H_2 and recombination reactions on catalyst surface to products.

1. Chemical Society Reviews 2017, 46 (19), 5805-5863

¹Comparison of thermal vs plasma catalysis

Technical Approach/Project Scope: CO₂ to CO

A: Plasma catalytic splitting of CO₂ to CO

B: Plasma catalytic RWGS process

ADEM's mini-GTL plant solution 1:

Plasma catalytic production of CO through splitting of CO_2 or through RWGS.

- On-site & on-demand production.
- Commercially available plasma power sources can be used to produce up to 10 m³/h on a modular basis.

Technical Approach/Project Scope: CO₂ to Methanol

Modular unit to produce methanol at 500 - 1,000 ton/yr.

Project Success Criteria

- Achieve ADEM's PlasCat[™] process for CO production from CO₂ at near atmospheric pressure economically (<<\$600/ton) and energy efficient (>50%).
- Demonstrate catalyst lifetime > 100 h.
- Show syngas production with $H_2/CO = 2$ at a throughout of $0.5 1 \text{ m}^3/\text{h}$.
- Optimize production of methanol with 10% yield at atmospheric pressure
- Fully integrated PFD and techno-economic models for mini-GTL plants for further scale up.
- Establish metrics (production scale, conversion, and energy efficiency) necessary for economical production for CO and methanol using Plascat process.

Project RisksMitigation StrategyHigh power plasma source for scaleupMake agreement with equipment
manufacturers for supplyProcess scalability: control bed TManipulate the contact between catalyst and
plasmaCost of production: H2 priceMitigating by using NG and H2ODelays due to Covid19No cost project extension

Project Risks and Mitigation Strategies

Progress and Current Status: ADEM's Catalysts

- 1-D nanowires as supports, or nanowires alloyed with active metals
- Active and high
 temperature stability
- Precision composition control
- Uniform loading

Bimetallic alloyed nanoparticles

Porous nanowire support

Patent Number	Issue Date	Patent Title
9,409,141	8/9/16	Methods for synthesizing metal oxide nanowires
10,030,201	7/24/18	Catalyst compositions and methods for desulfurization
		Nanowire based Hydrodesulfurization Catalysts for Hydrocarbon
10, 584,289	3/10/20	Fuels
62/457,695	2/10/17	Fuels
		International PCT - Flame based Fluidized Bed Reactor for
PCT/US17/47002	8/15/17	Nanomaterials Production
		International PCT - Nanowire based Hydro-desulfurization Catalysts
PCT/US18/12006	1/1/18	for Hydrocarbon Fuels
		International PCT- Nanowire based Adsorbents for Desulfurization of
PCT/US18/17355	2/14/18	Hydrocarbon Fuels
		Catalyst Compositions for Conversion of Furfulral to 2-Methylfuran
62/775,150	12/4/18	and their applications
		Spinel Lithium Titanium Oxide (LTO) Nanowire Anode Material for
62/554,619	8/29/19	Lithium Ion Batteries
		Novel CO2 Materials for Advanced Carbon Capture Technologies &
17/139,821	1/3/20	DBD Plasma Based Processes
		Nanowire based Hydrodesulfurization Catalysts for Hydrocarbon
16/841,401	4/6/20	Fuels - Continuation
		Desulfurization and Sulfur Tolerant Hydrogenation Processes of
16/841,714	4/6/20	Hydrocarbon Feedstocks
63/070,197	8/25/20	Plas-Cat Plasma Assisted Distribution of Chemical Production
63/010,477	4/15/20	Non-Passive Anti-viral and Nanofilter based Respirators

Progress and Current Status : Catalyst Stability in Plasma

Developed stable and active metal oxide alloy catalysts

Catalyst - A

Before exposing

Catalyst - B

Before exposing

After exposing to MW Plasma

The CO₂ conversion drops from 52.4% to 47.8% on catalyst-A in 1 h.

Catalyst-B shows 60% conversion and structural stability with time.

After exposing to MW Plasma, 1 h

Progress and Current Status: CO₂ to CO Conversion

 $SEI(Jcm^{-3}) = SEI(kJL^{-1}) = \frac{power(kW)}{Flow rate(Lmin^{-1})}x60$ $SEI(ev/mol) = 0.254 * SEI(kJL^{-1})$

 Δ H for RWGS: 0.425 eV/mol CO₂ splitting: 2.93 eV/mol

Energy efficiency = (Total conversion $X \Delta H_{298K} eV/mol$) / SEI(eV/mol)

The CO₂ splitting to CO at a throughput of 6 NLpm/kW, SEI – 2.6 eV/mol has showed 8-20% conversion depending on process variable.

✤ The CO₂ hydrogenation to CO at a total throughput of 12 NLpm/kW, CO₂/H₂ – 1, and SEI – 1.34 eV/mol shows 54% conversion.

✤ The CO₂ hydrogenation to CO in MW plasma and catalyst (catalyst –B) at a total throughput of 12 NLpm/kW, CO₂/H₂ = 1, and SEI = 1.33 eV/mol shows 60% conversion.

The addition of catalyst to plasma enhanced the CO₂ conversion by 6-7%. With the new reactor configuration we expect to achieve greater energy efficiency (>50%).

CO₂ Hydrogenation to CO: PlasCatTM vs State of the Art

$CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$	$\Delta H^0 = +41.2 \text{ kJ/ mol}$				
ADEM's PlasCat TM	State of the Art RWGS				
	¹ Lu et al. 40% conversion of CO ₂ over Ni/CeO ₂ catalyst, H ₂ /CO ₂ -1 and T-750 °C.				
	Materials Research Bulletin 2014 , 53, 70-78.				
Atmospheric pressure and plasma energy input.	² <i>Nature Catalysis, 2020</i> 18% conversion of CO_2 and 95% selectivity to CO over Ni- Au bimetallic catalyst using H ₂ /CO ₂ – 3 and				
High throughput (current):12-14 Lpm/kW Target throughput: 30 Lpm/kW	T-600 °C. Nature Catalysis 2020. 3 (4), 411-417.				
High CO_2 conversion-60% at H_2/CO_2 -1 and >99% selectivity .	³ Electrochemical reduction of CO_2 Solidoxide fuel cell operating at 850 °C and processes 1 m ³ CO ₂ at 6-8 kWhr				
Current status: 1 m ³ CO ₂ at 2 kWh	https://www.topsoe.com/processes/carbon-monoxide/site- carbon-monoxide. DBD Plasma+Catalyst Pd/ZnO				
	feed: H ₂ /CO ₂ -3, CO ₂ conversion- 32.5% <i>Applied Catalysis A: General</i> 2020 , <i>591</i> , 117407.				

Progress and Current Status: Demonstration of Plasma Catalyst Synergy Using OES

The OES analysis of plasma contacted with catalyst shows the populations of excited species correspond to oxygen and CO.

In this specific configuration ADEM can easily screen and design catalysts for improving the conversion and throughput.

Progress and Current Status: Dry & Tri-reforming

Thermocatalytic dry reforming

Developed and demonstrated the catalyst in dry reforming test (CO₂/CH₄ – 1, T-800 C, GHSV-7.8 I h⁻¹ gcat⁻¹) under thermocatalytic conditions.

Catalyst - C: CO_2 conversion - 99%; CH_4 conversion – 80%; 500 h of stability; no coking

Plasma catalytic tri-reforming

- MW Plasma catalytic tri reforming has produced at a throughput of 276 Lph/kW: CO₂ conversion – 78%, methane conversion – 90%, H₂/CO ≥ 2.2, and methanol yield of 2%.
- > The MW plasma tri-reforming with no catalyst at 780 Lph/kW has conversion of $CO_2 64\%$ and $CH_4 82\%$.

ADEM's PlasCat Process vs State of the Art

Brocoss	ADEM's	s Technology	State of the Art			
FIOCESS	CO2: CH4: H2O:Throughput%CO2% CH4H2/COO2(Lph/kW)ConversionConversionRatio				H2/CO Ratio	
Plasma catalytic Dry reforming	1:1:0:0	360	90	95	0.9	¹ Science, 2020: CO ₂ /CH ₄ -1, Catalyst- Ni-Mo/MgO, GHSV-60- 300 L/h, T-800 °C, P-1 bar,
Thermal DMR T – 800 °C	1: 1: 0: 0	GHSV – 7.8 L/h/gcat	99	80	-	$H_2/CO - 0.8-1$ with CO_2 conversion 80-100% and CH_4 -70-95%
Plasma Bi-reforming	1:1:1:0	550	69	-	1	 ²J of American Chemical Society, 2013: NiO/MgO catalyst, 5-30 bar, T-850 °C, CH₄/CO₂/H2O 3/1.2/2.4, GHSV-60 L/h. CO₂ conversion-75%, H₂/CO-2
Plasma Tri- reforming	0.4 : 1 : 0.75 : 0.2	276	78	90	2.2	³ Nature Scientific Reports, 2018: DBD Plasma + T-300 C. CO_2 conversion-18%, H ₂ /CO-1.4-1.7. CH ₃ OH yield – 0.24 mol%

1. Science 2020, 367 (6479), 777-781.

2. Journal of the American Chemical Society **2013**, *135* (2), 648-650.

3. Scientific Reports **2018**, 8 (1), 15929.

Progress and Current Status: Syngas to Methanol

New high pressure bench scale (catalyst 10 - 100 g) fixed bed reactor ID: $0.5 - 2'' \times L$: 25''. Reactor capable to handle up to P: 70 bar.

Tests under progress to develop kinetic model using ADEM's catalyst bimetallic catalyst P: 20-60 bar, T: 220-260 C, GHSV: $3,000 - 6,000 h^{-1}$

ADEM's bimetallic catalyst at H₂-CO₂/CO+CO₂ = 2, T: 220 °C, P: 20 bar and GHSV: 2, 600 h⁻¹ gcat⁻¹.

- Showed high 'C' conversion (>38%) closer to equilibrium conversion (40%) compared to catalyst of same composition prepared by conventional methods (20 to 25%) and commercial (Cu-Zn-Al) catalyst shows 18% conversion
- ✤ Good selectivity to methanol (94%) compared to industrial best catalyst (87%).

Progress and Current Status: CO₂ to Methanol

CO + 2H₂ → CH₃OH, Δ H = -90.8 kJ/mol CO₂ + 3H₂→ CH₃OH + H₂O, Δ H = -49.9 kJ/mol

Comparison of Plascat process with state-of-the-art plasma catalysis

Parameters	ADEM Plasma unit	DBD Plasma ¹
H_2 and CO_2 flow	12 and 6 slpm	30 and 10 ml/min
rates		
Power and time	700 W, 1.5 hrs	10 W, 1.5 hrs
Energy efficiency	664 mmol/kWh	306 mmol/kWh
Overall Methanol	465 mmol/h	4.6 mmol/h
rate (mmol/h)		

Progress and Current Status: T-E Analysis of Modular Plants

PFDs for mini plant of producing CO from CO_2 and H_2

Currently working on developing the metrics (target conversion and energy efficiency) for both CO and methanol plants that includes fully integrated systems for economical production.

For CO production, will setup the metrics for both CO_2 splitting and CO_2 hydrogenation pathways and the target unit capacity is 1 -10 m³ h⁻¹.

For methanol, target plant capacity is 500 – 1,000 TPA.

Plans for Future Testing & Development

- Optimize ADEM's Plascat process for CO₂ to CO: throughput from 6 lpm/kW to 30 lpm/kW and conversion from 10-20% to consistently >30% using CO₂ only.
- > Optimize ADEM's Plascat process for CO_2 to CO with H_2 ($H_2/CO 1$): throughput from 6 lpm/kW to 30 lpm/kW and conversion from 60% to consistently >80%.
- > Integrated MW plasma and DBD plasma catalysis processes for methanol production.
- Develop the kinetic model for syngas to methanol process
- Demonstrate the catalyst lifetime under plasma > 100 h.
- Finalize techno-economic models for mini plants and establish/validate the targets for economical production.
- \succ Life cycle analysis for net CO₂ reduction for the above mini plants.

Plans for Commercialization

ADEM is currently demonstrating its reactive adsorption-based desulfurization technology for gaseous and liquid hydrocarbons using a skid mounted mini plant.

Setup a similar demonstration unit for plascat process (processing capacity: 1-3 m³ h⁻¹) in house and later at an on-site of commercial partner (Brown-Forman).

Develop a fully integrated mini-plant system that includes product separation, purification and gas recycling. (SBIR Phase-IIA).

Demonstrate the scalability of the process using 6 kW, 915 MHz plasma source (Phase IIA).

- > ADEM is planning to raise series-B funding (\$3-5 MM) for commercialization.
- Partnering with equipment manufacturers/suppliers such as plasma source manufacturers (iPLAS).
- Reach out to more customers with help from commercialization assistance vendor (Tech-Opp consulting) and our strategic partners.

Summary

- Developed alloyed catalysts that are more stable under plasma, and at high temperature.
- Catalyst B has showed 60% conversion of CO₂ to CO with 100% selectivity to CO and stability in plasma.
- The ADEM's proprietary reactor configuration has showed significant synergy between plasma and catalyst supported by plasma diagnostics (OES data).
- The reforming catalyst has showed good stability over a period of 500 h at CO₂ conv of 99% and 80% CH₄ conversion.
- The process of CO₂ to methanol with CO as a byproduct will be optimized for high selectivity to methanol.
- In syngas to methanol process, the bimetallic alloyed catalyst has showed near equilibrium CO₂ conversion and high selectivity to methanol compared to industrial catalyst and by conventional methods.

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Organization	Tasks	Team		
		Dr. Sivakumar Vasireddy		
	Setting up plasma catalytic test reactors catalyst development	Dr. Juan He		
Advanced Energy Materials LLC	plasma catalysis tests for CO_2	Dr. Tu Nguyen		
	conversion to CO / syngas / methanol and process parameters optimization	Luke Guhy		
	Developing skid mounted unit	Ms. Neeti Rastogi		
	solutions for CO_2 to chemicals.	Dr. Mahendra Sunkara		
		Ms. Vasanthi Sunkara		
	Plasma catalytic process modeling	Dr. C.B. Panchal		
E ³ Tec LLC	CO_2 footprint, Life cycle analysis and Techno-economic analysis.	Ms. Kruti Goyal		
Tech Opp Consulting	Commercialization Assistance	Mr. Brian Phillips		

Gantt Chart

	Budget Yr I (Aug27 th 2020-Aug26 th 2021)			Budget Y	Budget Yr II (Aug27 th 2021-Aug26 th 2022)			
Phase II Tasks	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Task 1. High Throughput and High conversion of CO ₂					-	-		
Sub-Task 1.1 Optimization of catalysts	75%							
Sub-Task 1.2 CO ₂ hydrogenation activity in a plasma fixed bed reactor	60%							
Sub-Task 1.3 CO ₂ hydrogenation in a plasma fluidized reactor			25%					
Task 2. MW Plasma Catalytic Production of Methanol								
Through Tri-Reforming Using CH4+CO2+H2O								
Sub-Task 2.1 Syngas production from CO $_2$ reforming of methane	40%							
Sub-task 2.2 Syngas to methanol studies using fixedbed and DBD reactors at different pressures	35%							
Task 3. Process Scaleup and Lifetime Studies				-				
Sub-Task 3.1 Kilogram scale synthesis of catalysts					80%			
Sub-Task 3.2 Scalability and lifetime studies with MW plasma fluidized bed						•		
reactor								
Sub-Task 5.5 Melnanoi synthesis from syngas in a fixea bea reactor at 100								
Task 4. Techno-Economic& C-footprint based life cycle								
Subtask 4.1 Process Analysis			4	0%				
Sub-task 4.2 C-footprint Analysis			3	5%				
Sub-task 4.3 Techno-Economic Analysis (TEA)			3	0%				
Task 5. Process Validation of Pilot scale Unit								
Task 6. Project management and reporting								

