#### Intensified Catalytic Conversion of CO<sub>2</sub> into High Value Chemicals

Project Number: DE-FE0031920 Performing Organization: University of Kentucky CAER Principal Investigator: Jesse Thompson caer.uky.edu/power-generation/

National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings, August 2 through August 31, 2021

1

# **Project Overview**

- Develop technology to convert CO<sub>2</sub> to valuable products to partially offset carbon capture costs from the utility and industrial sectors.
- Contribute to the production of a formic acid at a lower cost than is currently available, potentially disrupting C1 feedstock markets
- Project Period: 10/1/2020 9/30/2022 (2 years)
- Funding: Federal \$1M; CS \$250K; Total \$1.25M





# **Project Objectives**

Developing  $CO_2$  utilization technologies to reduce the cost of post-combustion  $CO_2$  capture through:

- Screening and production of engineered CO<sub>2</sub> reducing catalysts capable of <u>producing C1/C2 products</u>, including formic acid
- 2. Immobilization and protection of the catalyst within a flow-through process for increase catalyst lifetime and continuous production
- 3. Develop a <u>pressurized electrochemical reactor</u> to increase production rates
- 4. Long-term <u>stable operation with high selectivity</u> towards formic acid



🟆 Center for Applied Energy Research

### **Motivation**



The current commercial market for formic acid is relatively small at <1M tonnes per year

Two potential new markets with lower cost formic acid:

- Formic acidbased fuel cells
- Liquid H<sub>2</sub> storage medium

#### **Formic Acid Production**



Formic acid (HCO<sub>2</sub>H) has been selected as the target:
1) Lowest Gibbs energy input
2) Lowest atomic (proton/electron) input
3) High potential for growth in commercial market for formic acid

Phil. Trans. R. Soc. A 2010, 368, 3343; ACS Catal. 2017, 7, 5381; J. Phys. Chem. Lett. 2015, 6, 4073

#### Alternative Production Pathway --Electrochemical CO<sub>2</sub> Reduction



Formic Acid with  $CO_2$  and  $H_2O$  as inputs:

Anode Reaction:

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2$ 

Cathode Reaction:

 $2CO_2 + 2H^+ + 4e^- \rightarrow 2HCOO^-$ 

Net Reaction:

 $2H_2O + 2CO_2 \rightarrow 2HCOO^- + 2H^+$ 

Water or hydrogen gas can be used to generate protons and electrons at the anode, but the reaction product at the cathode will depend on the <u>electrode/catalyst</u>.

## Why So Many Reaction Products?



While the reduction of  $CO_2$  to formic acid can be a relatively simple process (requiring H<sup>+</sup> and 2e<sup>-</sup>), when more reduced products are desired the protonation of  $CO_2$  on the catalyst surface can be quite difficult and leads to a range of reaction products.

# Challenges and Limitations to CO<sub>2</sub>-U

- Reaction rate Matching CO<sub>2</sub> source
- Catalyst stability
  - Degradation due to overpotential
  - Faradic inefficiencies
  - Oxidants/inhibitors

#### Electrode charge density and stability

- Active surface area
- Degradation

#### Purification

- Catalyst selectivity
- Separation of co-products

#### **UK CAER EBOCU Process**



To provide a highly selective and robust process, the UK CAER *Enhanced Bi-Metallic Oxide Carbon Utilization* (EBOCU) process focuses on:
1. Using bi-metallic metal oxide catalyst with tailored/optimized properties
2. Leverage pressurized operation to enhance CO<sub>2</sub> conversion 10

## **Our Approach to Address Limitations**

- Reaction rate
- Catalyst Stability

(1) Catalyst ⁻ Development

- Electrode degradation
- Electrode charge density





Purification of Formic Acid Maximizing selectivity

# **Catalyst for CO<sub>2</sub> Reduction**



Hydrothermal synthesis of bimetal/oxide (CuSn/CuSnOx and CuCo/CuCoOx) catalysts



M1 - Cu; M2 - Co or Sn; O1 - nonstoichiometric oxygen

Proposed mechanism of formation of formic acid on bimetal/oxide catalysts from CO<sub>2</sub>

<u>Goal</u>: Synthesized and tested different ratios of Co, Cu and Sn bimetal/oxide nano-catalysts for production of C1/C2 compounds from  $CO_2$ 

## **Catalyst for CO<sub>2</sub> Reduction**



Starting with a combination of Co and Cu, bare Co (hydroxide) consists of needles.

Introducing Cu to Co changes the morphology as well as crystallinity yielding relatively flat nano-catalyst sheets



# **Electrode for CO<sub>2</sub> Reduction**



Carbon Xerogel (CX) is a good scaffold to immobilize the catalyst while also maintaining good conductivity Catalyst: Nano Cu (discs) made by hydrothermal synthesis (Airbrush catalyst loading: 2.85 mgcm<sup>-2</sup>)

# **Electrodes for CO<sub>2</sub> Reduction**



- H-cell using 1 M KHCO $_3$  (cathode) and 1 M H $_2$ SO $_4$  (anode)
- CO<sub>2</sub> purge
- Nano-Cu catalyst loading: 2.85 mg/cm<sup>2</sup>
- Electrode area: 2.4 cm<sup>2</sup>
- Production of 44 mM Formate (-1.5V) (3 hr.)

# Additional Tasks – TMP, LCA, TEA

#### Technology Maturation Plan (TMP)

 Describes the current technology readiness level (TRL) of the proposed technology/technologies, relates the proposed project work to maturation of the proposed technology, describes the expected TRL at the end of the project, and describes any known post-project research and development necessary to further mature the technology.

#### Life-Cycle Analysis (LCA)

 An LCA will be performed to demonstrate the potential of the proposed intensified electro-catalyst process to be a substantive CO<sub>2</sub> mitigation option by verifying the life cycle GHG reduction potential of the products(s) and technology (on a percent reduction basis) relative to current state-ofthe-art pathways.

#### Final Techno-Economic Assessment with Technology Gap Analysis

 A high-level return-on-investment (ROI) analysis will be conducted to assess the viability of the proposed process to reduce GHG emissions from power plants based on the collected lab-scale data.

#### **Success Criteria**

| 24-month<br>timeline   | Due Date  | Success Criteria (Task #)                                                                                                     |  |  |  |  |  |
|------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 12 months into project | 9/30/2021 | Catalyst capable of <u>formic acid selectivity of &gt;</u><br><u>80%</u> (Task 2)                                             |  |  |  |  |  |
| 18 months into project | 3/31/2022 | CCE electrode with <u>ohmic impedance contribution</u><br>< 10 ohm (Task 3)                                                   |  |  |  |  |  |
| End of project         | 9/30/2022 | Flow cell with production of <u>25 mM Formic acid,</u><br><u>50% Faradaic Efficiency</u> , and operating at < 4 V<br>(Task 4) |  |  |  |  |  |
| End of project         | 9/30/2022 | Long-term production of formic acid for <u>&gt;50 hours</u><br>at 5 mM/hr (Task 4)                                            |  |  |  |  |  |

## **Project Schedule**

|                                                                                                      |                    |         |         |                     | Federal FY 20/21 and 21/22 |    |    |    |    |    |    |    |
|------------------------------------------------------------------------------------------------------|--------------------|---------|---------|---------------------|----------------------------|----|----|----|----|----|----|----|
| Task Number and Name                                                                                 | Length<br>(months) | Start   | End     | Primary<br>Personal | Q1                         | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 |
| 1. Project Management and Planning                                                                   | 24                 | 10/1/20 | 9/30/22 | Jesse               |                            |    |    |    |    |    |    |    |
| 1.1 Project Management Plan                                                                          | 24                 | 10/1/20 | 9/30/22 | Jesse               |                            |    |    |    |    |    |    |    |
| 1.2 Technology Maturation Plan                                                                       | 24                 | 10/1/20 | 9/30/22 | Jesse               |                            |    |    |    |    |    |    |    |
|                                                                                                      |                    |         |         |                     |                            |    |    |    |    |    |    |    |
| 2. Development of Electrocatalysts for CO2 reduction                                                 | 18                 | 10/1/20 | 3/31/21 | Muthu               |                            |    |    |    |    |    |    |    |
| 2.1 Eectrocatalysis Formulation                                                                      | 12                 | 10/1/20 | 9/30/21 | Muthu               |                            |    |    |    |    |    |    |    |
| 2.2 Electrocatalysis Characterization                                                                | 6                  | 10/1/21 | 3/31/22 | Muthu               |                            |    |    |    |    |    |    |    |
| M4. Synthesis of four homogeneous bi-metal oxide catalyst                                            |                    |         | 9/30/21 |                     |                            |    |    | *  |    |    |    |    |
| with different molar ratios of Cu and Sn/Co.                                                         |                    |         | 5150121 |                     |                            |    |    | ~  |    |    |    |    |
| 3. Reactor Design and Catalyst Evaluation                                                            | 18                 | 10/1/20 | 3/31/22 | Daniel              |                            |    |    |    |    |    |    |    |
| 3.1 Evaluation of Catalyst Coated Electrodes (CCE)                                                   | 9                  | 10/1/20 | 6/30/21 | Daniel              |                            |    |    |    |    |    |    |    |
| 3.2 Half-cell Parametric Testing of CCE                                                              | 18                 | 10/1/20 | 3/31/22 | Daniel              |                            |    |    |    |    |    |    |    |
| M5. 30% decline in cathode/anode after 50 CV cycles                                                  |                    |         | 9/30/21 |                     |                            |    |    | ★  |    |    |    |    |
| 4. Integrated Reactor and Catalyst Testing                                                           | 18                 | 4/1/21  | 9/30/22 | Daniel              |                            |    |    |    |    |    |    |    |
| 4.1 Full Cell Design and Integration                                                                 | 12                 | 4/1/21  | 3/31/22 | Daniel              |                            |    |    |    |    |    |    |    |
| 4.2 Stability Testing                                                                                | 12                 | 10/1/21 | 9/30/22 | Daniel              |                            |    |    |    |    |    |    |    |
| 4.3 Long-term Reactor Operation                                                                      | 18                 | 4/1/21  | 9/30/22 | Daniel              |                            |    |    |    |    |    |    |    |
| M6. Flow cell capable of 25 mM Formic Acid production<br>at 2 mL/min with Faradaic Efficiency of 40% |                    |         | 6/30/22 |                     |                            |    |    |    |    |    | *  |    |
| <ol> <li>Final Techno-Economic Assessment with Technology<br/>Gap Analysis</li> </ol>                | 6                  | 4/1/22  | 9/30/22 | Jesse/Ayo           |                            |    |    |    |    |    |    |    |
|                                                                                                      |                    |         |         |                     |                            |    |    |    |    |    |    |    |
| 6. Life Cycle Analysis                                                                               | 6                  | 4/1/22  | 9/30/22 | Jesse               |                            |    |    |    |    |    |    |    |

# Acknowledgements

• DOE-NETL: Kyle Smith, Katharina Daniels

• UK CAER: Muthu Gnanamani (Co-I), Ayo Omosebi (Co-I), Pom Kharel, Lisa Richburg, Kunlei Liu



## Center for Applied Energy Research