An Intensified Electro-Catalytic Process for Production of Formic Acid from Power Plant CO₂ Emissions

Project Number: DE-FE0031720 Performing Organization: University of Kentucky CAER Principal Investigator: Jesse Thompson caer.uky.edu/power-generation/

National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings, August 2 through August 31, 2021

caer.uky.edu

Project Overview

- Develop and test a novel electro-catalytic method for the production of high-value formic acid from coal-derived CO₂ as a strategy to offset the cost of CO₂ capture.
- The project involves the development and testing of an engineered catalyst to selectively reduce CO₂ directly and exclusively to formic acid, along with process intensification aspects of the reactor design.
- Project Period: 1/1/2019 12/31/2021 (36 months)
- Project Funding: Federal \$800K; CS \$201K; Total \$1M
- Project Team: UK CAER and UNIST

Project Objectives

Develop CO_2 utilization technologies to reduce the cost of postcombustion CO_2 capture through:

- 1. Screening and production of engineered CO_2 reducing catalyst capable of exclusively producing formic acid;
- 2. Protection of the catalyst within a flow-through process to continually produce formic acid and increase catalyst lifetime;
- 3. Long-term stable operation with high selectivity towards formic acid

caer.uky.edu

Motivation

Formic acid is the closest to CO_2 from an energy perspective, i.e. smaller hill to climb compared to other common CO_2 reduction products

The current commercial market for formic acid is relatively small, mainly as a preservative in animal feed, at ~1M tonnes per year.

Two potential new markets with lower cost formic acid:

- Formic acid-based fuel cells
- Liquid H₂ storage medium

Technology Background

Electrochemical CO₂ Reduction

Formic Acid produced with CO_2 and H_2O as inputs: <u>Anode Reaction</u>:

 $2H_2O \rightarrow 4H^+ + 4e^- + O_2$

Cathode Reaction:

 $2CO_2 + 2H^+ + 4e^- \rightarrow 2HCOO^-$

Net Reaction:

 $2H_2O + 2CO_2 \rightarrow 2HCOO^- + 2H^+ + O_2$

Water or hydrogen gas can be used to generate protons and electrons at the anode, but the reaction product at the cathode will depend on the <u>electrode material and catalyst</u>.

UK CAER Andora Process

Cathode Reaction (-): Reduction of Methyl Viologen (MV)

 $4MV^{2+} + 4e^- \leftrightarrow 4MV^+$ E = -0.67 vs. Ag/AgCl

Anode Reaction (+): Water Oxidation

 $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$ E = 0.617 vs. Ag/AgCl, pH=7

caer.uky.edu

Charge Carrier

Methyl Viologen (MV)

th clear blue

Oxidized Methyl Viologen loses its blue color after e⁻ transfer

Formic acid production cell where methyl viologen transfer e⁻ to the catalyst

Reduced methyl viologen (blue) entering formic acid production cell

- MV²⁺ has been demonstrated to be a stable electron mediator
- The active catalyst can accept an electron not from working electrode directly, but from reduced MV⁺.
- This type of electron transfer <u>minimizes</u> <u>overpotentials and catalyst</u> <u>degradation</u>

- Methyl Viologen (MV), Ethyl Viologen (EV) and Anthraquinonone Disulfonate (AQDS) charge mediators have low reduction voltages (-0.6 to -0.8 V vs. Ag/AgCI)
- Carbon felt electrode in H-cell, charged at -0.75 V vs. Ag/AgCl for 1.5 h (left), discharge (OCV run) for 4.5 h (right)

Three viable charge carriers evaluated; EV selected for continued development based on activity, stability and lowest environmental concern

Flow-through Reactor Design

Operating variables:

- Anode materials (Pt and Pt-Ir)
- Cathode solution flow rates from 1-9 mL/min
- Catalyst immobilization with low pressure drop membranes
- Sulfuric acid used as anode solution (proton source) at labscale, but can be replaced with H_2 or OER in next iteration

Flow-through Reactor Operation

Cathode: 200 mM phosphate buffer + 10 mM EV charge carrier; Carbon felt electrode operated at -0.74V vs Ag/AgCl

Anode: 100 mM Sulfuric acid proton source with platinum electrode and Nafion membrnae

Pure CO₂ gas purge

2 mL/min cathode flow rate

Achievement: > 500 mM *Formate* production with > 80% Faradaic efficiency (FE) and > 90% selectivity

Operating Options

Formate production achieved using both a phosphate and carbonate buffer system

Formate/Formic Acid Separation

- Water + Formic Acid Azeotrope Distillation
- Membrane pervaporation pre-concentrating before distillation
- Liquid-liquid extraction
- <u>lon exchange (IEX)</u>
 - Commercially available IEX with capacities up to 450 mg formate / g IEX from our process solution (viologen and buffer recycled)

Remaining Work

- Update Technology Maturation Plan (TMP)
 - Performance attributes and requirements will be re-evaluated. Post project maturation plans will be updated along with an assessment of the technology's current TRL level.
- Life-Cycle Analysis (LCA)
 - Demonstrate the proposed process to be a substantive CO₂ mitigation option and verify the life cycle GHG reduction potential of the products(s) and technology (on a percent reduction basis) relative to current state-of-the-art pathways.
- Initial Technical and Economic Feasibility Study (TEA)
 - A high-level return-on-investment (ROI) analysis will be conducted to assess the viability of the proposed process to reduce GHG emissions from power plants based on the collected lab-scale data.

LCA

System Boundaries

LCA

Contribution of Different Sections in Global Warming Potential (GWP)

(TRACI 2.1 method)

Using sulfuric acid as proton source at lab-scale

Switch to H_2 as proton source for scale-up

Contribution	Process	A	Amount U	Init	Contribution	Process	Amount	Unit
✓ 100.00%	P CO2U -Base - Prop.	-	5.20394 kg	g CO2e	✓ 100.00%	P CO2U (V2)- H2 inst H2SO4	2.27558	ka CO2e
	P Sulfuric acid, at plant - RNA	-	3.96300 kg	g CO2e			1.12143	-
	P Generic Power Grid Mixer	1	0.81159 kg	g CO2e	> 35.67%		0.81159	-
	P CO2 Source Mixer - Prop	1	0.32285 kg	g CO2e	10.37%	P Hydrogen Production - Steam Methane Reforming		kg CO2e
> 02.05%	P Sodium_Thiosulfate	1	0.10650 kg	g CO2e				2
00.00%	P Dummy_Water for industrial use	1.97	232E-16 kg	g CO2e	> 04.68%	P Sodium_Thiosulfate		kg CO2e
-00.00%	P Catalyst for CO2U - US-KY	-1.31	831E-16 kg	g CO2e	00.00%	P Dummy_Water for industrial use	0.00000	kg CO2e

By switching from sulfuric acid to H₂ the GWP was significantly reduced

TEA

- Detailed process design created for TEA

Knowledge Gained/Challenges

- Moving from a batch cell to a flow-through configuration can be challenging due to larger volumes, residence times, and matching reaction rates between both reactors/cells.
- Formate production achieved using both a phosphate and carbonate buffer system
- Proton (H⁺) source in CO₂ reduction is an important factor in LCA

Milestones

Budget Period	Task Number	Title	Planned Completion Date	Actual Completion Date	Verification Method
				1/31/19 (A)	Revised PMP Revision A
1	1	Updated Project Management Plan	1/31/2019	3/14/2019 (B)	Revised PMP Revision B
				2/28/20 (C)	Revised PMP Revision C
1	1	Kickoff Meeting	3/31/2019	3/25/2019	Presentation file
1	1	Subcontracts Established	3/31/2019	10/16/2019	Written Verification
1	2	Issue Technology Maturation Plan	6/30/2019	6/30/2019	Appended to Quarterly Report
1	3	Quarterly production and delivery of improved catalyst with verified formic acid production capabilities	12/31/2020	12/31/2020	Quarterly Report
1	4	Production cell capable of 25 mM formic acid during continuous production at 2 ml/min with Faradaic efficiency of at least 50%	9/30/2021		Quarterly Report
1	5	Long-term formic acid production for >100 hours with produced concentrations of 25 mM	6/30/2020	7/6/2020	Quarterly Report
1	5	High-performance cell capable of >100 mM of continuous formic acid production	9/30/2021		Quarterly Report
1	6	Issue report on Life Cycle Analysis	12/31/2021		Appended to Quarterly Report
1	7	Issue Report on Technical and Economic Feasibility Study	12/31/2021		Appended to Quarterly Report

Success Criteria

Success Criteria (Task #)	Status						
(#4) Electrochemical cell carrier charge efficiency of greater than 60%	Average 60% efficiency achieved						
(#4) Fabrication of the flow-through apparatus: Production cell capable of supporting flow rate of 2 mL/min during continuous operation	Achieved - operating between 2-9 mL/min						
(#3) Catalyst production: Two grams of catalyst produced and supplied to UK CAER with stability (less than 25% deactivation) of greater than 100hr	Catalyst being provided in batches as needed						
(#4) Immobilization of catalyst: 90% of catalyst retained in production cell during continuous operation as verification by analysis	Above 95% retention						
(#5) Production of formic acid from CO ₂ : Continuous operation of reduction and production cells with a formic acid production of 25 mM and a selectivity of greater than 80%	25 mM formic acid production with high (>90%) selectivity for >100 hours						

Project Schedule

			FY20:	FY2019			FY2020				FY2021			FY2022
Task Number and Name	Start	End	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1. Project Management and Planning	1/1/19	12/31/21												
1.1 Task management and execution	1/1/19	12/31/21												
1.2 Update PMP	1/1/19	12/31/21												
1.3 Briefings and Reports	1/1/19	12/31/21												
						_								
2. Technology Maturation Plan	1/1/19	6/30/19					_							
Issue TMP		6/30/19		☆										
3. Development of Electro-Catalysts	1/1/19	12/31/20												
3.1 Screening of electro-catalysts	1/1/19	9/30/19												
3.2 Stability testing of electro-catalysts	7/1/19	3/31/20												
3.3 Scale-up production of catalysts	1/1/20	12/31/20												
Catalyst production		12/31/20								☆				
4. Electro-catalyst flow-through reactor design,														
fabrication and commissioning	1/1/19	12/31/20												
4.1 Immobilization of electro-catalyst	1/1/19	9/30/19												
4.2 System pressure and flowrate testing	10/1/19	6/30/20												
4.3 Charge carrier and production testing	10/1/19	12/31/20												
5. Lab-scale reactor testing	1/1/19	9/30/21												
5.1 Reactor operation and optimization	1/1/19	3/31/20												
5.2 Stability testing of flow-through reactor	10/1/19	9/30/21												
5.3 Evaluation of formic acid purification process	7/1/20	9/30/21												
25 mM formic acid producitons with 50% efficiency	.,_,_,	9/30/21											☆	
Long-term FA 100 hr at 25 mM		6/30/20						☆						
100 mM Formic acid production		9/30/21											☆	
6. Life cycle analysis	1/1/21	12/31/21												
7. Initial technical and economic feasibility study	1/1/21	12/31/21												

caer.uky.edu

Acknowledgements

- DOE-NETL: Naomi O'Neil, Andy Aurelio
- UK CAER: Daniel Moreno, Ayo Omosebi, Keemia Abad, Lisa Richburg
- UNIST: Professor Yonghwan Kim, Byoung Wook Jeon

