ELECTROCHEMICAL REDUCTION OF FLUE GAS CO₂ TO COMMERCIALLY VIABLE C2 – C4 PRODUCTS PROJECT: DE-FE0031916

Joshua M. Spurgeon University of Louisville, Louisville, KY

Program Manager: Andy Aurelio

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Funding

- DOE: \$1,000,000
- Cost Share: \$252,536 (UofL \$188,536, UND \$64,000)

Overall Project Performance Dates

- One budget period
- Start: October 1, 2020
- End: September 30, 2022

Project Participants

- Recipient University of Louisville
 - PI Joshua Spurgeon Theme Leader for Solar Fuels, Conn Center for Renewable Energy Research
 - Co-PI Craig Grapperhaus, Professor, Chemistry Department
- Subrecipient University of North Dakota
 - Co-PI Nolan Theaker, Research Engineer, Institute for Energy Studies
- Partner Minnkota Power Cooperative

PROJECT OVERVIEW

Overall Project Objectives

- <u>Objective 1</u> Establish mechanistic pathway for product formation in methanol and characterize vs potential and pH
- <u>Objective 2</u> Build an electrolysis flow cell reactor for high current density performance stable for > 100 h

• <u>Objective 3</u> - Design an electrolyzer for direct conversion of flue gas to C2 - C4 species with > 90% of the initial faradaic efficiency maintained for > 100 h and > 50% of the product partial current achieved in an analogous system with pure CO₂ feedstock

• <u>Objective 4</u> - Combine flue gas feed with the optimized flow cell reactor to demonstrate performance and stability targets for commercial viability

• <u>Objective 5</u> - Perform a TEA with late-stage project performance parameters, and complete a life cycle analysis (LCA) for the energy usage and CO₂ emissions reduction

TECHNOLOGY BACKGROUND

Technology Overview:

- Use of power plant flue gas derivatives for CO₂ reduction
- Electrolysis flow cell reactor for stable high current, high faradaic efficiency
- Nonaqueous catholyte to enable high selectivity production of novel products not found in aqueous CO₂ reduction
- Dual electrolyte approach with aqueous anolyte to have sustainable water oxidation

Methanol electrolyte enables

- Higher CO₂ solubility (0.17 M compared to 0.033 M in water)
- Chemical addition of CO₂ with electrolyte as an intermediate for non-standard CO₂ reduction products

 $CO_2 + 2e^- + 2H^+ + CH_3OH \longrightarrow HCOOCH_3 + H_2O \longrightarrow H_2O \longrightarrow 1/2 O_2 + 2 e^- + 2 H^+$

Methyl formate

- Initial target C2 product
- Not an aqueous electrochemical CO2RR product
- Must come from waste CO₂, rigorously exclude anodic methanol oxidation
- Combined CO2RR to HCOOH and in-situ esterification reaction with methanol
- Similar C3 C4 product routes in ethanol and propanol to be pursued later

 Technical Advantages Flow cell for high current, high selectivity operation Nonaqueous catholyte for high solubility and intermediate reactant addition 	 Economic Advantages Electroreduction – room temperature, atmospheric pressure, rapid response, use for intermittent or curtailed electricity
 Aqueous anolyte for sustainable water oxidation rather than methanol oxidation which does not incorporate CO₂ 	 Waste CO₂ turned into value added product - 45Q tax credit - \$35/ton CO₂ utilized Byproduct H₂ is still valuable
Membrane to incorporate methanol barrier layer for minimal crossover – similar concepts successfully developed for direct methanol fuel cells	 Direct utilization of flue gas – no CAPEX for CO₂ capture plant
	 Methanol ~ \$375/ton, methyl formate ~ \$1000- 2000/ton
Technical Challenges	
 Flue Gas - Mitigate contaminants degrading stability (SO_x, NO_x, Hg, PM), dilute O₂ decreasing faradaic efficiency (FE), lower CO₂ concentration 	 Economic Challenges Achieving high current density and FE for acceptable capital costs
• Flue Gas - Mitigate contaminants degrading stability	• Achieving high current density and FE for acceptable
 Flue Gas - Mitigate contaminants degrading stability (SO_x, NO_x, Hg, PM), dilute O₂ decreasing faradaic efficiency (FE), lower CO₂ concentration Chemistry – Maintain low pH for high FE to methyl 	 Economic Challenges Achieving high current density and FE for acceptable capital costs Minimizing methanol anodic oxidation as an

Work Plan

- Task 1 (Q1) Project Management and Planning
- Task 2 (Q1-7) Improvement of Faradaic Efficiency to C2-4 Products
- Task 3 (Q1-7) Develop Electrolysis Reactor for High-current CO₂ Reduction
- Task 4 (Q3-7) CO₂ Electrolysis System from Power Plant Flue Gas Derivatives
- Task 5 (Q5-8) Full System Integration with Commercially Relevant Performance
- Task 6 (Q7-8) Technoeconomic Analysis and Life Cycle Analysis

Quarter	1	2	3	4	5	6	7	8
Key Mileston	Fabricate Flow Cell Electrolyzer	Complete pH and Applied Potential Study	Demonstrate C_{2+} FF > 40%	Contaminants	Methanol Crossover < 5% FE CH ₃ OH Oxidation	Current Density > 600 mA cm ⁻²	Flue Gas Performance > 100 h with > 40% FE C2+	Operation on Utility Site Flue Gas > 1 Week

Project Success Criteria

- Complete TEA and LCA for realistic system parameters with sensitivity analysis
- Completion of a reactor operating from flue gas at performance metrics for profitability as determined by the TEA (Target Metrics: 600 mA cm⁻² at > 40% FE C2-4s for > 100 h)

Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy				
	(Low	, Med, High)					
Cost/Schedule Risks:								
Parameter effect studies take too	Med	Med	Med	Constant communication between				
long to keep up with reactor				catalyst and reactor				
development				teams/redirection of priorities				
Technical/Scope Risks:								
Flue gas feed performance and	Med	Med	Med	Multiple catalyst options (Pb, Sn,				
stability issues				Bi), decontamination, CO ₂ absorber,				
				CO ₂ concentration studies				
Insufficiently high current density	Med	Med	Med	Flow cell condition optimization,				
				maximize aqueous systems first				
Difficulty achieving or maintaining	Med	Med	High	Product distribution mapping, CO ₂				
high FE of C2 - C4 product				mass transfer optimization, pH				
				stabilization				
ES&H Risks:	ES&H Risks:							
Covid-19 inhibiting research	High	Low	Low	Safety protocols, remote meetings,				
				limited lab capacity				

Task 2 – Improvement of Faradaic Efficiency to C2-4 Products

- Determination of System Parameter Effects Effect of pH
- Again, the initial focus is on methyl formate as the desired product

Faradaic efficiency vs. initial catholyte pH for a Pb wire at -1.85 V vs Ag/AgCl for 30 min in KCl-saturated methanol catholyte/56 mM KCl in water anolyte.

Conversion of the CO_2 reduction liquid product to methyl formate (black triangles) and measured NMR peak chemical shift (red squares) as a function of the final pH value in the saturated KCl in CH₃OH catholyte.

Direct H-cell studies with a Pb wire cathode

- pH < 2.5 to favor methyl formate
- pH < 1 starts to promote H₂ evolution and hurt methyl formate FE

 $+ H_2O$

Task 2 – Improvement of Faradaic Efficiency to C2-4 Products

• Determination of System Parameter Effects – Effect of Water Content in Catholyte

Effect of water in the catholyte. (A) NMR spectra and corresponding (B) molar percent conversion of formic acid to methyl formate for formic acid dissolved in 3 mM HCl in methanol with increasing water content by volume %.

- Maintain catholyte water content to < 20% to keep more than 75% of CO₂ product going to methyl formate
- Increased H₂O and decreased MeOH can disfavor the esterification by Le Chatlier principle

Task 2 – Improvement of Faradaic Efficiency to C2-4 Products Determination of System Parameter Effects – Effect of Applied Potential

Sat. KCl, pH \sim 1.5 CH₃OH catholyte and 3 mM HCl, 56 mM KCl in water anolyte separated by Nafion.

Current density vs. potential for a Pb or Pt wire.

- H₂ evolution strongly suppressed on Pb relative to Pt
- Up to 75% FE methyl formate at -2.0 V vs. Ag/AgCl
- Methyl formate FE decreases and HCOOH/HCOO⁻ FE increases with time and/or charge passed – corresponds to increased catholyte pH

Partial current densities and FE vs. applied potential measured after potentiostatic operation for (A, B) 30 min and (C, D) 120 min.

Formate Formic Acid Methyl Formate Hydrogen ---Cathode ---Anode

PROGRESS AND CURRENT STATUS OF PROJECT

Task 2 – Improvement of Faradaic Efficiency to C2-4 Products

Determination of System Parameter Effects – Increasing H₂ FE and Surface Film •

 H_2 FE vs. time at a Pb wire under CO₂ in sat. KCl, CH₃OH catholyte.

•

•

•

XPS on Pb wire cathode.

- Increasing H₂ FE correlated to black film formation Pb catalyst deactivation
- XPS indicates a likely Cl-containing carbonaceous layer
- Substitution of KCl with KPF₆ led to suppression of the black film formation

@-2.0 V

End pH

2

12

electrolysis.

Task 3 – Develop Electrolysis Reactor for High-current CO₂ Reduction

Electrolyzer Chassis Design

Flow cell exploded view.

- Acid-stable components for low pH operation
- Porous carbon Toray paper gas diffusion electrodes (GDE) for high catalyst loading and high mass flux of reactants
- Three-compartment arrangement with methanol through central compartment and gaseous CO₂ through cathode flowfield
- Peristaltic and/or syringe pumps for electrolyte flow
- Catholyte/anolyte reservoirs with density measurement to monitor water/methanol content

Flow cell system setup.

٠

•

٠

•

Task 3 – Develop Electrolysis Reactor for High-current CO₂ Reduction

CO₂ Feed to the Cathode – Optimizing Pb-decorated GDE Cathodes

Pulsed-electrodeposited Pb on GDEs has worked best with > 75% FE

Working to optimize flow and current density in the flow cell in

for formate/methyl formate in methanol in the H-cell

96% FE formate achieved in aqueous KHCO₃ in flow cell

aqueous system before returning to methanol catholyte

Various cathodes in an H-cell. -1.85 V vs. Ag/AgCl						
Electrode Type	CO2RR FE (%)					
Pb Wire	59.6					
Blank GDE	4.9					
Spray-deposited Pb NP GDE	6.9					
Doctor-bladed Pb NP GDE	23.1					
Pb NP Immersion GDE	55.9					
Electrodeposited Pb GDE	29.1					
Pulse- electrodeposited Pb GDE	75.2					

(A) Potential profile during Pb pulsed-electrodeposition. (B) SEM and (C) EDS map cross-section of pulse-deposited Pb-GDE.

Full size pulsedeposited Pb-GDE

Pb

PROGRESS AND CURRENT STATUS OF PROJECT

Task 3 – Develop Electrolysis Reactor for High-current CO₂ Reduction

Methanol Crossover and Oxidation – Membrane Testing Apparatus and Characterization

Porous PTFE membranes, from Sterlitech

Digital Wifi hydrometer for continuous density readings

Anolyte methanol concentration vs. time for membranes between sat. KCl in $CH_3OH/56$ mM KCl in H_2O catholyte/anolyte.

- Methodology for monitoring crossover via density measurements established extend to data logging digital hydrometer
- In-situ EIS measurements of resistance
- Optimize crossover vs. conductivity, hydrophobicity of PTFE
- Perform in flow cell and characterize anode products

Task 4 – CO₂ Electrolysis System from Power Plant Flue Gas Derivatives

• Impurity and CO₂ Concentration Effects – Flue Gas Composition and Testing

Species	Flue Gas Composition	Electrochemical Effect
CO ₂	14 - 16 vol%	N/A
N_2	80 - 85 vol%	Diluent
O ₂	2 - 4 vol%	Loss of Faradaic Efficiency
NO	~ 80 ppm	Catalyst Poisoning/Parasitic Current
SO ₂	~ 45 ppm	Catalyst Poisoning/Parasitic Current
PM	~ 9 ppm	Catalyst Coverage, Impedance
Hg	~ 1.2 ppb	Catalyst Poisoning

- Delayed: Staffing issues at collaborator so work relocated to University of Louisville
- Flue gas testing setup nearly complete - Early experiments show no effect on performance with 100 ppm SO₂ over 2 h

Experiments to be done:

- Simulated flue gas and contaminants for testing SO₂, NO, Hg, PM
- Stability and materials characterization with varying impurity concentration to establish threshold values
- Performance characterization with variable CO₂ concentration
- Measure faradaic efficiency effects of dilute O₂ in feed gas

Alternative electrocatalysts to Pb to promote HCOOH/HCOOCH₃: Sn, Bi

Current Status

- Task 2 understanding the electrochemical system and improving the faradaic efficiency of methyl formate production is on target
- Task 3 flow cell electrolyzer design and methanol crossover testing has made progress, but the group needs to solve engineering challenges to increase the current density
- Task 4 flue gas electrolysis work was delayed by staffing issues at our collaborator and subsequent reassignment of experimental work to the University of Louisville, but testing apparatus and simulation gas setup is almost ready

Quarter	1	2	3		5	6	7	8
Key Milestone	Fabricate Flow Cell Electrolyzer	Complete pH and Applied Potential Study	Demonstrate $C_{2+} E_{E} > 40\%$	Contaminante	EF CH ₂ OH	Current Density > 600 mA cm ⁻²	Flue Gas Performance > 100 h with > 40% FE C2+	Operation on Utility Site Flue Gas > 1 Week

Collaboration and Synergy Opportunities

- Flow Cell Reactor A collaborator experienced in flow cell operation for CO₂ reduction could be very beneficial to helping us solve engineering issues to increase the current density
- Membranes Collaboration could benefit the project with new approaches to minimize both aqueous and nonaqueous crossover with minimal resistance
- Flue Gas Collaboration would be welcome with strategies to maintain high current with low concentration CO₂

<u>POSTDOC OPPORTUNITY!!!</u> – We would love to hire an additional researcher with proven CO_2 electroreduction expertise.

PLANS FOR FUTURE TESTING/DEVELOPMENT/COMMERCIALIZATION

Plans for the future

- On-site flue gas testing of flow cell electrolyzer at a power plant
- Continue development of high performance nonaqueous catholyte CO₂ electrolyzers for additional novel products

Three-carbon products

- Ethyl formate, C₃H₆O₂ like methyl formate route, CO₂ reduction to formic acid and esterification in ethanol
- Methyl acetate, C₃H₆O₂ CO₂ reduction to acetate and esterification in methanol

Four-carbon products

 Propyl formate, C₄H₈O₂ – CO₂ reduction to formic acid and esterification in propanol

Commercialization plan

- Provisional/non-provisional patent applications of generated IP
- Pursue SBIR funding for device scale-up
- Look for collaborative opportunities with large electrolyzer manufacturers
- Customer discovery through utilities, cement producers, chemical manufacturers, oil companies
- Potentially license technology to CO₂ electrolysis companies like Dioxide Materials or Opus 12

formate

Ethyl

Waste CO₂ can be electrochemically upgraded in nonaqueous solvent to species not produced in aqueous systems, like methyl formate. Conversion can be accomplished with high selectivity and current, but challenges must be overcome including system stability of pH, catalysts, and electrolyte composition.

- Up to 75% FE HCOOCH₃ achieved
- System needs catholyte to maintain 1 < pH < 2.5 for methyl formate
- Supporting electrolyte plays a critical role in conductivity, pH, membrane permeability, and catalyst deactivation

- Organization Chart
- Gantt Chart

THANK YOU FOR LISTENING

<u>CO-PIS:</u> CRAIG GRAPPERHAHUS NOLAN THEAKER

Researchers: Dillon Hofsommer Manu Gautam Sandesh Uttarwar Hank Paxton Arjun Thapa

Task Namo		Year 1				Year 2			
Task Name	Q1	Q2	Q3	Q 4	Q1	Q2	Q3	Q4	
Task 1.0 - Project Management and Planning	ο								
Task 2.0 – Improvement of Faradaic Efficiency to C2-4 Products		ο		0		х			
Task 3.0 – Develop Electrolysis Reactor for High- current CO ₂ Reduction	ο		х		х	х			
Task 4.0 - CO₂ Electrolysis System from Power Plant Flue Gas Derivatives				х			х		
Task 5.0 – Full System Integration with Commercially Relevant Performance								x	
Task 6.0 – Technoeconomic Analysis and Life Cycle Analysis								X	

Task Duration

Completed Work

O – Complete Milestone

X – Incomplete Milestone

