Electrochemical Reduction of Flue GAS CO2 TO_{2} COMMERCIALly Viable C2 C4 Products PROJECT: DE-FE0031916

Joshua M. Spurgeon

University of Louisville, Louisville, KY
Program Manager: Andy Aurelio
U.S. Department of Energy

National Energy Technology Laboratory
Carbon Management and Natural Gas \& Oil Research Project Review Meeting
Virtual Meetings August 2 through August 31, 2021

UNIVERSITY OF NORTH DAKOTA

Funding

- DOE: \$1,000,000
- Cost Share: \$252,536 (UofL - \$188,536, UND - \$64,000)

Overall Project Performance Dates

- One budget period
- Start: October 1, 2020
- End: September 30, 2022

Project Participants

- Recipient - University of Louisville
- PI - Joshua Spurgeon - Theme Leader for Solar Fuels, Conn Center for Renewable Energy Research
- Co-PI - Craig Grapperhaus, Professor, Chemistry Department
- Subrecipient - University of North Dakota
- Co-PI - Nolan Theaker, Research Engineer, Institute for Energy Studies
- Partner - Minnkota Power Cooperative
N를

NATIONAL
ENERGY
TECHNOLOGY LABORATORY

Overall Project Objectives

- Objective 1 - Establish mechanistic pathway for product formation in methanol and characterize vs potential and pH
- Objective 2 - Build an electrolysis flow cell reactor for high current density performance stable for $\mathbf{>} 100 \mathrm{~h}$

- Objective 3 - Design an electrolyzer for direct conversion of flue gas to C2-C4 species with >90\% of the initial faradaic efficiency maintained for $>100 \mathrm{~h}$ and $>50 \%$ of the product partial current achieved in an analogous system with pure CO_{2} feedstock
- Objective 4 - Combine flue gas feed with the optimized flow cell reactor to demonstrate performance and stability targets for commercial viability
- Objective 5 - Perform a TEA with late-stage project performance parameters, and complete a life cycle analysis (LCA) for the energy usage and CO_{2} emissions reduction

UNIVERSITYOF
LOUISVILLE. CONN CENTTR
N-NATIONAL ENERGY
T TECHNOLOGY LABORATORY

Technology Overview:

- Use of power plant flue gas derivatives for CO_{2} reduction
- Electrolysis flow cell reactor for stable high current, high faradaic efficiency
- Nonaqueous catholyte to enable high selectivity production of novel products not found in aqueous CO_{2} reduction
- Dual electrolyte approach with aqueous anolyte to have sustainable water oxidation

NATIONAL ENERGY
\uparrow TECHNOLOGY
UNIVERSITY OF NORTH DAKOTA
LABORATORY

Methanol electrolyte enables

- Higher CO_{2} solubility (0.17 M compared to 0.033 M in water)
- Chemical addition of CO_{2} with electrolyte as an intermediate for non-standard CO_{2} reduction products

Methyl formate

$\mathrm{CO}_{2}+2 \mathrm{e}^{-}+2 \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{HCOOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O} \longrightarrow 1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}+2 \mathrm{H}^{+}$

- Initial target C2 product
- Not an aqueous electrochemical CO2RR product
- Must come from waste CO_{2}, rigorously exclude anodic methanol oxidation
- Combined CO2RR to HCOOH and in-situ esterification reaction with methanol
- Similar C3 - C4 product routes in ethanol and
 propanol to be pursued later

UNIVERSITYOF
LOUISVILLE. CONN CENTER

Technical Advantages

- Flow cell for high current, high selectivity operation
- Nonaqueous catholyte for high solubility and intermediate reactant addition
- Aqueous anolyte for sustainable water oxidation rather than methanol oxidation which does not incorporate CO_{2}
- Membrane to incorporate methanol barrier layer for minimal crossover - similar concepts successfully developed for direct methanol fuel cells

Technical Challenges

- Flue Gas - Mitigate contaminants degrading stability ($\mathrm{SO}_{\mathrm{x}}, \mathrm{NO}_{\mathrm{x}}, \mathrm{Hg}, \mathrm{PM}$), dilute O_{2} decreasing faradaic efficiency (FE), lower CO_{2} concentration
- Chemistry - Maintain low pH for high FE to methyl formate, low methanol crossover

UNIVERSITYOF LOUISVILLE. CONN CENTTER

Economic Advantages

- Electroreduction - room temperature, atmospheric pressure, rapid response, use for intermittent or curtailed electricity
- Waste CO_{2} turned into value added product - 45Q tax credit - \$35/ton CO_{2} utilized
- Byproduct H_{2} is still valuable
- Direct utilization of flue gas - no CAPEX for CO_{2} capture plant
- Methanol ~ \$375/ton, methyl formate ~ \$10002000/ton

Economic Challenges

- Achieving high current density and FE for acceptable capital costs
- Minimizing methanol anodic oxidation as an operating expense
- Market size for chemicals vs. industrial CO_{2} output need for diversified products with favorable TEA

NATIONAL ENERGY

Work Plan

- Task 1 (Q1) - Project Management and Planning
- Task 2 (Q1-7) - Improvement of Faradaic Efficiency to C2-4 Products
- Task 3 (Q1-7) - Develop Electrolysis Reactor for High-current CO_{2} Reduction
- Task 4 (Q3-7) - CO_{2} Electrolysis System from Power Plant Flue Gas Derivatives
- Task 5 (Q5-8) - Full System Integration with Commercially Relevant Performance
- Task 6 (Q7-8) - Technoeconomic Analysis and Life Cycle Analysis

Quarter	1	2	3	4	5	6	7	8
Key Milestone	Fabricate Flow Cell Electrolyzer	Complete pH and Applied Potential Study	Demonstrate $C 2+F E>40 \%$	Complete Flue Gas Contaminants Study	Methanol Crossover < 5\% FE CH3OH Oxidation	$\begin{gathered} \text { Current } \\ \text { Density > } \\ 600 \mathrm{~mA} \mathrm{~cm}^{-2} \end{gathered}$	Flue Gas Performance > 100 h with > 40\% FE C2+	Operation on Utility Site Flue Gas > 1 Week

NATIONAL ENERGY TECHNOLOGY LABORATORY

Project Success Criteria

- Complete TEA and LCA for realistic system parameters with sensitivity analysis
- Completion of a reactor operating from flue gas at performance metrics for profitability as determined by the TEA (Target Metrics: $600 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ at > 40\% FE C2-4s for > 100 h)

Perceived Risk		sk Rating		Mitigation/Response Strategy
	Probability	Impact	Overall	
	(Low, Med, High)			
Cost/Schedule Risks:				
Parameter effect studies take too long to keep up with reactor development	Med	Med	Med	Constant communication between catalyst and reactor teams/redirection of priorities
Technical/Scope Risks:				
Flue gas feed performance and stability issues	Med	Med	Med	Multiple catalyst options (Pb, Sn, Bi), decontamination, CO_{2} absorber, CO_{2} concentration studies
Insufficiently high current density	Med	Med	Med	Flow cell condition optimization, maximize aqueous systems first
Difficulty achieving or maintaining high FE of C2-C4 product	Med	Med	High	Product distribution mapping, CO_{2} mass transfer optimization, pH stabilization
ES\&H Risks:				
Covid-19 inhibiting research	High	Low	Low	Safety protocols, remote meetings, limited lab capacity

UNIVERSITYOF
LOUISVILLE. CONN CENTTER

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 2 - Improvement of Faradaic Efficiency to C2-4 Products

- Determination of System Parameter Effects - Effect of pH
- Again, the initial focus is on methyl formate as the desired product

- Formate
- Formic Acid
- Methyl Formate

Faradaic efficiency vs. initial catholyte pH for a Pb wire at -1.85 V vs $\mathrm{Ag} / \mathrm{AgCl}$ for 30 min in KCl-saturated methanol catholyte/ 56 mM KCl in water anolyte.

Conversion of the CO_{2} reduction liquid product to methyl formate (black triangles) and measured NMR peak chemical shift (red squares) as a function of the final pH value in the saturated KCl in $\mathrm{CH}_{3} \mathrm{OH}$ catholyte.

Direct H-cell studies with a Pb wire cathode

- $\mathrm{pH}<2.5$ to favor methyl formate
- $\mathrm{pH}<1$ starts to promote H_{2} evolution and hurt methyl formate FE

UNIVERSITYOF LOUISVILLE. CONN CENTTR

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 2 - Improvement of Faradaic Efficiency to C2-4 Products

- Determination of System Parameter Effects - Effect of Water Content in Catholyte

$-\mathrm{H}^{+} \|+\mathrm{H}^{+}$

$+\mathrm{MeOH}$
$\mathrm{H}^{-\stackrel{\text { O}}{\mathrm{C}}}{ }_{-}$ $+\mathrm{H}_{2} \mathrm{O}$

Effect of water in the catholyte. (A) NMR spectra and corresponding (B) molar percent conversion of formic acid to methyl formate for formic acid dissolved in 3 mM HCl in methanol with increasing water content by volume $\%$.

- Maintain catholyte water content to $\mathbf{~} \mathbf{2 0 \%}$ to keep more than $\mathbf{7 5 \%}$ of CO_{2} product going to methyl formate
- Increased $\mathrm{H}_{2} \mathrm{O}$ and decreased MeOH can disfavor the esterification by Le Chatlier principle

UNIVERSITY OF NORTH DAKOTA
N

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 2 - Improvement of Faradaic Efficiency to C2-4 Products

- Determination of System Parameter Effects - Effect of Applied Potential

Sat. $\mathrm{KCl}, \mathrm{pH} \sim 1.5 \mathrm{CH}_{3} \mathrm{OH}$ catholyte and $3 \mathrm{mM} \mathrm{HCl}, 56 \mathrm{mM} \mathrm{KCl}$ in water anolyte separated by Nafion.

Current density vs. potential for a Pb or Pt wire.

- H_{2} evolution strongly suppressed on Pb relative to Pt
- Up to 75% FE methyl formate at -2.0 V vs. $\mathrm{Ag} / \mathrm{AgCl}$
- Methyl formate FE decreases and HCOOH/HCOO FE increases with time and/or charge passed corresponds to increased catholyte pH
\square Formate \simeq Formic Acid \simeq Methyl Formate \simeq Hydrogen \longrightarrow Cathode \longrightarrow Anode
Partial current densities and FE vs. applied potential measured after potentiostatic operation for (A, B) 30 min and (C, D) 120 min .

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 2 - Improvement of Faradaic Efficiency to C2-4 Products

- Determination of System Parameter Effects - Increasing H_{2} FE and Surface Film

$-2.1 \mathrm{~V}-2.0 \mathrm{~V}-1.9 \mathrm{~V}-1.8 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{FE}$ vs. time at a Pb wire under CO_{2} in sat. $\mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}$ catholyte.

- Increasing H_{2} FE correlated to black film formation - Pb catalyst deactivation
- XPS indicates a likely Cl -containing carbonaceous layer
- Substitution of KCl with KPF_{6} led to suppression of the black film formation

XPS on Pb wire cathode.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 3 - Develop Electrolysis Reactor for High-current CO_{2} Reduction

- Electrolyzer Chassis Design

Flow cell exploded view.

- Acid-stable components for low pH operation
- Porous carbon Toray paper gas diffusion electrodes (GDE) for high catalyst loading and high mass flux of reactants
- Three-compartment arrangement with methanol through central compartment and gaseous CO_{2} through cathode flowfield
- Peristaltic and/or syringe pumps for electrolyte flow
- Catholyte/anolyte reservoirs with density measurement to monitor water/methanol content

Flow cell system setup.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 3 - Develop Electrolysis Reactor for High-current CO_{2} Reduction

- CO_{2} Feed to the Cathode - Optimizing Pb-decorated GDE Cathodes

Various cathodes in an H-cell. -1.85 V vs. Ag/AgCl

Electrode Type	CO2RR FE (\%)
Pb Wire	59.6

Blank GDE 4.9

Spray-deposited Pb NP GDE Doctor-bladed Pb NP GDE
Pb NP Immersion GDE
Electrodeposited
Pb GDE
Pulse-
electrodeposited Pb GDE

(A) Potential profile during Pb pulsed-electrodeposition. (B) SEM and (C) EDS map cross-section of pulse-deposited Pb-GDE.

- Pulsed-electrodeposited Pb on GDEs has worked best with > 75\% FE for formate/methyl formate in methanol in the H-cell
- $\mathbf{9 6 \%}$ FE formate achieved in aqueous KHCO_{3} in flow cell
- Working to optimize flow and current density in the flow cell in aqueous system before returning to methanol catholyte

UNIVERSITYOF LOUISVILLE. CONN CENTER

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 3 - Develop Electrolysis Reactor for High-current CO_{2} Reduction

- Methanol Crossover and Oxidation - Membrane Testing Apparatus and Characterization

Anolyte methanol concentration vs. time for membranes between sat. KCl in $\mathrm{CH}_{3} \mathrm{OH} / 56 \mathrm{mM}$ KCl in $\mathrm{H}_{2} \mathrm{O}$ catholyte/anolyte.

- Methodology for monitoring crossover via density measurements established - extend to data logging digital hydrometer
- In-situ EIS measurements of resistance
- Optimize crossover vs. conductivity, hydrophobicity of PTFE
- Perform in flow cell and characterize anode products

Digital Wifi hydrometer for continuous density readings

Porous PTFE membranes, from Sterlitech

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task $4-\mathrm{CO}_{2}$ Electrolysis System from Power Plant Flue Gas Derivatives

- Impurity and CO_{2} Concentration Effects - Flue Gas Composition and Testing

Species	Flue Gas Composition	Electrochemical Effect
CO_{2}	$14-16 \mathrm{vol} \%$	$\mathrm{~N} / \mathrm{A}$
N_{2}	$80-85 \mathrm{vol} \%$	Diluent
O_{2}	$2-4 \mathrm{vol} \%$	Loss of Faradaic Efficiency
NO	$\sim 80 \mathrm{ppm}$	Catalyst Poisoning/Parasitic Current
SO_{2}	$\sim 45 \mathrm{ppm}$	Catalyst Poisoning/Parasitic Current
PM	$\sim 9 \mathrm{ppm}$	Catalyst Coverage, Impedance
Hg	$\sim 1.2 \mathrm{ppb}$	Catalyst Poisoning

- Delayed: Staffing issues at collaborator so work relocated to University of Louisville
- Flue gas testing setup nearly complete - Early experiments show no effect on performance with 100 ppm SO_{2} over 2 h

Experiments to be done:

- Simulated flue gas and contaminants for testing - $\mathrm{SO}_{2}, \mathrm{NO}, \mathrm{Hg}, \mathrm{PM}$
- Stability and materials characterization with varying impurity concentration to establish threshold values
- Performance characterization with variable CO_{2} concentration
- Measure faradaic efficiency effects of dilute \mathbf{O}_{2} in feed gas

Alternative electrocatalysts to Pb to promote $\mathrm{HCOOH} / \mathrm{HCOOCH}_{3}$: Sn, Bi

Current Status

- Task 2 understanding the electrochemical system and improving the faradaic efficiency of methyl formate production is on target
- Task 3 flow cell electrolyzer design and methanol crossover testing has made progress, but the group needs to solve engineering challenges to increase the current density
- Task 4 flue gas electrolysis work was delayed by staffing issues at our collaborator and subsequent reassignment of experimental work to the University of Louisville, but testing apparatus and simulation gas setup is almost ready

Collaboration and Synergy Opportunities

- Flow Cell Reactor - A collaborator experienced in flow cell operation for CO_{2} reduction could be very beneficial to helping us solve engineering issues to increase the current density
- Membranes - Collaboration could benefit the project with new approaches to minimize both aqueous and nonaqueous crossover with minimal resistance
- Flue Gas - Collaboration would be welcome with strategies to maintain high current with low concentration CO_{2}

POSTDOC OPPORTUNITY!!! - We would love to hire an additional researcher with proven CO_{2} electroreduction expertise.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Plans for the future

- On-site flue gas testing of flow cell electrolyzer at a power plant
- Continue development of high performance nonaqueous catholyte CO_{2} electrolyzers for additional novel products

Three-carbon products

- Ethyl formate, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ - like methyl formate route, CO_{2} reduction to formic acid and esterification in ethanol
- Methyl acetate, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}-\mathrm{CO}_{2}$ reduction to acetate and esterification in methanol

Four-carbon products

- Propyl formate, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}-\mathrm{CO}_{2}$ reduction to formic acid and esterification in propanol
 Ethyl formate
 Methyl acetate

Propyl formate

Commercialization plan

- Provisional/non-provisional patent applications of generated IP
- Pursue SBIR funding for device scale-up
- Look for collaborative opportunities with large electrolyzer manufacturers
- Customer discovery through utilities, cement producers, chemical manufacturers, oil companies
- Potentially license technology to CO_{2} electrolysis companies like Dioxide Materials or Opus 12

Waste CO_{2} can be electrochemically upgraded in nonaqueous solvent to species not produced in aqueous systems, like methyl formate. Conversion can be accomplished with high selectivity and current, but challenges must be overcome including system stability of pH , catalysts, and electrolyte composition.

- Up to 75\% FE HCOOCH_{3} achieved
- System needs catholyte to maintain $1<\mathrm{pH}<2.5$ for methyl formate
- Supporting electrolyte plays a critical role in conductivity,
 pH , membrane permeability, and catalyst deactivation

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Organization Chart
 - Gantt Chart

Thank you for Listening

Co-PIs:

Craig Grapperhahus
Nolan Theaker

RESEARCHERS:
Dillon Hofsommer
Manu Gautam
Sandesh Uttarwar
Hank Paxton
Arjun Thapa

UNIVERSITY OF
LOUISVILLE. CONN CENTTR

Organization Chart

Task Name	Year 1				Year 2			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1.0-Project Management and Planning	0							
Task 2.0 - Improvement of Faradaic Efficiency to C2-4 Products		0		0		x		
Task 3.0 - Develop Electrolysis Reactor for Highcurrent CO_{2} Reduction	0		X		X	x		
Task $4.0-\mathrm{CO}_{2}$ Electrolysis System from Power Plant Flue Gas Derivatives				X			X	
Task 5.0 - Full System Integration with Commercially Relevant Performance								X
Task 6.0 - Technoeconomic Analysis and Life Cycle Analysis								x

Task Duration

Completed Work

O - Complete Milestone X - Incomplete Milestone

