CREATES: CO₂ REduction for grAphiTE Synthesis DE-SC0020776

Anthony R. Richard, Ph.D. Acadian Research & Development LLC Laramie, WY

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

Period of Performance: Original: June 29, 2020 – June 25, 2021 No Cost Extension (COVID-19): December 31, 2021

Project Funding: DOE \$239,379 Cost Share \$0

Project Participants: Acadian Research & Development LLC

Project Overview

Project objectives are designed to exploit the strengths of the catalysts, and to evaluate catalyst performance and stability.

The five feasibility objectives of this Phase I SBIR project are:

- a) Demonstrate successful synthesis of catalysts
- b) Show that catalyst can reduce CO_2 to produce carbon
- c) Demonstrate catalyst stability of greater than 30h and ability to regenerate
- d) Demonstrate successful operation of the multi-stage reactor
- e) Demonstrate that the dominant allotrope produced is graphite

Technology Background

Previous catalyst development: methanol synthesis from CO₂

Calcined catalyst Reduced catalyst

Metal silicate-based system

- Good CO₂ interaction
- Active at mild temperatures / ambient pressure
- Resistance to coking carbon rejection
- Resistance to sintering
- Partial reduction yields isolated metal nanoparticles

Richard, A. R.; Fan, M. ACS Catalysis 2017, 7 (9), 5679-5692. Richard, A. R.; Fan, M. Fuel 2018, 222, 513-522. Promoter addition

- Good promoter incorporation
- Improved methanol synthesis activity
- Stability not decreased by promoter

Technology Background

Applied technology

Aspect	Advantages
Catalyst metals	Catalytic activity with CO ₂
Thermal treatment to form catalyst nanoparticles	Sintering resistance
Promoter	Increased activity
3D-printed morphology	High contact surface area and low pressure drop

Key challenges

Aspect	Challenges
Conversion	Rate must be sufficient for feasibility
Stability	Long catalyst life desired
Regeneration	Ability to repeatedly regenerate
Carbon growth	Growth on substrate / allotrope is graphite

Technology Background

Multi-stage reactor

- CO₂ is decomposed in the first stage
- Carbon is deposited on growth substrate in second stage

Technical Approach/Project Scope

Work plan

- Prepare the catalysts with and without promoter.
- Characterize catalysts via XRD, FTIR, SEM, Raman.
- Complete CO₂ testing in TGA.
- Examine regeneration performance.
- Scale-up catalyst synthesis for 3D printing.
- Testing in multi-stage FBR.

Milestones

- 1. Successfully synthesize catalysts with and without promoter
- 2. Decompose CO_2 and produce carbon in FBR

Technical Approach/Project Scope

Project success criteria:

Synthesis: Achieve intended catalyst structure as characterized by XRD and FTIR, and comparable to previous work and literature values.

Performance: Activity for at least 30 hours with final activity >70% of the initial (first 5 hours) activity.

Regeneration: Activity restored to at least 85% of initial activity.

3D-printing: Monolith strong enough for handling, loading into reactor, and testing without significant attrition.

Carbon allotrope: Graphite formation on growth substrate as determined by Raman.

Cycling stability: Maintain >75% of the initial activity.

Synthesis

No promoter
With promoter

Performance

FBR testing with catalyst powder and sand Catalyst reduced in situ Reaction gas: Only CO₂ Temperature: 350–650 °C Time: 1–55 h

> Formation rate: 0.03 wt%/h Surface content: 0.52 wt%

Bosch Reaction: $CO_2 + 2 H_2 \rightarrow C + 2 H_2O$

> Moderate conversion and CO production

Performance

CH₄ decomposition: to confirm catalyst activity and system performance, methane decomposition was performed

Good performance led to testing CO₂ decomposition via the Sabatier reaction

 $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$

- CH₄ favored at low temperature
- CO appears above 500 °C

Regeneration

Before regeneration testing, catalyst was loaded with carbon via methane decomposition.

Catalyst regeneration in air at 450 °C showed equivalent or better performance after regeneration.

Catalyst geometry

Extruded pellet support with catalyst coating

Extruded mixed support/catalyst

3D-printed:

- Printed substrate, coated
- Printed mixed support/catalyst

3D-printing

3D-printer paste extruder system

Ink development (paste for extrusion)

Components:

- Binder
- Liquid
- Lubricant
- (Catalyst)

Requirements:

- Appropriate viscosity
- Layer adhesion
- Reasonable curing time/temperature

Plans for future testing/ development/commercialization

This project: Complete scheduled tasks Identify best catalyst candidates

Next: Scale-up production of catalysts Scale-up of testing

Summary

- Pure CO₂ decomposition is possible at these reaction conditions, but the rate is slow.
- Bosch reaction shows moderate conversion.
- High methane decomposition performance inspired CO₂ conversion via Sabatier reaction.
- Graphite formation elusive.
- Successfully developed ink formulations for 3D-printing catalysts.
- Successfully grown catalyst on support surface.

Thank You

Questions?

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Project Team - Acadian Research & Development

Gantt Chart

Task Name	Q1		Q2			Q3			Q4			Q5			Q6			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Project Management and Planning																		
1. Prepare the Ni- and Cu-phyllosilicate catalysts																		
2. Perform XRD and FTIR on the prepared catalysts																		
Milestone 1.Successfull synthesis of catalysts with and without promoter																		
3. Complete CO ₂ decomposition testing in TGA																		
4. Perform regeneration temperature testing																		
5. Scale-up synthesis and 3D-print monoliths																		
6. Multi-stage FBR testing and carbon characterization																		
Milestone 2. Decompose CO ₂ and produce carbon in FBR																		
7. Data analysis, economic evaluation, final report, Phase II proposal																		