

Conversion of CO₂ to Alkyl Carbonates Using Ethylene Oxide as Feedstock (DE-SC0013233) *Integrated Process of CO₂ Capture and Conversion to Chemicals: Technology Challenges & Opportunities*

C. B. Panchal, Kruti Goyal and Richard Doctor E3Tec Service LLC

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Started in 2014 with ERA, Alberta Round 1 Grant

SBIR Funding: \$2,140,781 : total Phase I, II and IIb

> Overall Project Performance Dates:

SBIR Phase I:02/17/2015 - 11/16/2015SBIR Phase II:06/10/2016 - 06/10/2018SBIR Phase IIb:05/27/2019 - 08/27/2021

> Project Participants:

Michigan State University (MSU) Illinois Sustainability Technology Center (UIUC/ISTC) Gas Technology Institute (GTI) Air Liquide Advanced Separation (ALAS) Unitel Technologies, Inc.

Project Overview

Overall Project Objectives

SBIR Phase I and Phase II: Development of heat-

integrated reactive distillation (HIRD) for conversion of captured CO₂ to Dimethyl Carbonate (DMC)

SBIR Phase IIb: Advancing Phase II process development to an integrated process of capture and conversion of CO₂ to alkyl carbonates.

Challenges for Carbon-to-Chemical (C2C)

Technical

- Unsuitable process technologies developed for petrochemicals
- Lack of credible techno-economic merits of C2C technology
- > Uncertain market analysis for long-term demands of C2C chemicals
- > Nascent stage of technologies for conversion of CO_2 to Chemicals

Economic

- > Uncertainty of imminent regulatory policy for carbon management
- Accounting costs associated with CO₂ capture, transportation, sequestration and monitoring
- > Competitiveness of Green Chemicals versus petroleum derived chemicals
- Large investment in R&D leading to Demonstration for innovative C2C processes

ec

Solution: Integrated Process of CO₂ Capture and Conversion to DMC

Conversion of Captured CO₂ to DMC using Trickle-Bed Reactor

CO₂ Capture from Primary Sources and Conversion to DMC using Adsorbent Catalytic Reactor

Method of direct conversion of CO₂ to alkyl carbonates using ethylene oxide as feedstock US Patent, 2021

Ethylene & Propylene Oxide Based DMC Process Direct Conversion by Eliminating Ethylene Carbonate Process

SBIR Phase I and SBIR Phase II

CH₂O-CO-OCH₂

Ethylene Carbonate

+ 2 CH₃OH ←

Methanol

CH₃O-CO-OCH₃

+ $HOCH_2$ - CH_2OH

Dimethyl Carbonate

Mono-Ethylene Glycol

SBIR Phase IIb Sequential

CH ₂ -O-CH2 +		+ 2 CH ₃ OH		H_3 + HOCH ₂ -CH ₂ OH
Ethylene Oxide	lene Oxide Methanol	Dimethyl Carbona	te Mono-Ethylene Glycol	
CH₃-CH-O-CH2 +		+ 2 CH ₃ OH	CH ₃ O-CO-OCH ₃	+ HOCH ₂ -CH-OH-CH ₃
Propylene Oxide	-	Methanol	Dimethyl Carbonate	Propylene Glycol

Green Technology Merits

High-Purity Products and 9x Reduction in carbon-footprint compared to commercial DMC processes

C-footprint Analysis*, kg CO ₂ / kg DMC	E3Tec Process	Syngas-Based Process		
CO ₂ Consumption ⁺	-0.51	NA		
CO ₂ Emission Inside Battery Limits (ISBL)	0.58	1.29		
Methanol from Commercial Process	0.39	0.47		
Ethylene Oxide from Commercial Process	0.31	NA		
Total CO ₂ Emissions	1.28	1.76		
Offsetting CO ₂ Emissions of Coproduction of MEG	-0.58	NA		
Net CO ₂ Emissions	0.19	1.76		

* Ethylene-oxide based DMC process;

⁺Captured CO₂ with 90%+ purity

Techno-Economic Analysis

Commercially profitable to syngas-based DMC process

Economic Parameters	E ³ Tec Process	Syngas-Based Process		
DMC Capacity, kTA	57	57		
MEG Capacity, kTA	40	NA		
Capital Cost (CAPEX), \$MM	\$198	\$219		
Cost of Production, \$/tonne DMC*	\$488	\$685		
Levelized Cost of DMC, %	15% lower			
DMC Quality	99.9%	90% to 95%		

*Includes cost of 60 \$/Tonne CO₂ @ 90%+ purity; MEG @ market cost

Technical Approach/Project Scope

Project Success Criteria

- Development of validated design methodology for scale-up from prototype lab testing to commercial-scale plant
- Advancing conversion of CO₂ to DMC from TRL-5 of Laboratory Testing of Semi-Integrated System to TRL-7 of Integrated Pilot System Demonstration
- > Justification of techno-economic merits of conversion of CO_2 to DMC

Project Risks and Mitigation Strategy

- Project Risks: Key technical challenge is to demonstrate synthesis of high-purity (99.9%) DMC by utilization of CO₂ from primary sources
- Mitigation Strategy: Reduce technical uncertainty by integrated technology demonstration unit for industry acceptance

Technical Approach/Project Scope

Work Plan

- 1. Prototype tests for validation of the ASPEN Plus[®] process scale-up methodology
- 2. Qualification of catalysts for direct conversion of CO₂ from primary sources to chemical intermediate for further conversion to dimethyl carbonate with HIRD process
- Comparative analysis of C-footprint based LCA and TEA for a) Captured CO₂; b) Integrated CO₂ Capture and Conversion and c) syngas based DMC
- 4. Design of Technology Demonstration Unit

Progress and Current Status of Project

lagneticall Coupled Motor

Product

Cataly Bag

Test Units in Phase I, II and II-Sequential

Adsorbent Catalytic Reactor (ACR) Test Unit Patented Differential Kinetic Test Unit (DKTU) 10-meter Reactive Distillation Columns Integrated with Side Reactors

Aspen Plus[®] Scale Up Design Methodology

Accomplishment of Milestones

- 1. Developed validated ASPEN Plus[®] scale-up model based on prototype test data
- 2. Developed adsorbent catalytic reactor for direct conversion of CO₂ from primary sources
- 3. Demonstrated favorable economics based on a detailed market analysis
- C-footprint model interlinked with ASPEN Plus[®] exemplified that CO₂ emissions would be significantly lower compared to commercial syngas DMC process
- 5. Designed a demo unit and developed industry contacts for the next phase of the project

Progress and Current Status of Project

Synergistic efforts

- a. <u>CO₂ capture technology</u>: E3Tec evaluated 2nd generation CO₂ capture technologies for synergistic efforts for implementing C2C technology in the near term
- a. <u>Co-product formations</u>: DMC and Glycol are platform chemicals for production of valuable higher alkyl carbonates and consumer products. This multi-faceted technology would be adopted by large chemical manufactures with green agenda of C2C.

Plans for future testing/development/ commercialization

Plans for Next Phase

Technology Demonstration Unit Leading to Commercialization

- Integration of 1 tonne/day technology demonstration unit with to validate techno-economic merits
- Strategic alliance with industry partners for commercial-scale pilot plant with 10 to 20 tonne/day or pre-commercial DMC plant

R&D Efforts

- Development of the adsorbent catalytic reactor with improved catalysts and CO₂ adsorbents
- Application of the HIRD equipped with side reactors and membrane separations to CO₂ conversion to other specialty chemicals

Summary Slide

Key Findings, Lessons Learned, and Future Plans

- \succ Important to evaluate the thermodynamics of conversion of CO₂ to specialty chemicals before pursuing significant process development
- SBIR project will be completed in August 2021 and the future-plan focuses on *Technology Demonstration Unit* for validation of the techno-economic merits leading to commercialization
- E3Tec is seeking industry participation for Technology Demonstration Unit

"Take-Away" Message

DMC is an ideal platform chemical for CO₂ utilization based on expanding market demands of alkyl carbonates for lithium-ion batteries, expanding use of polycarbonates and its use in consumer products such as polyurethane 18

Acknowledgements

Financial and Technical Supports

Ethylene-Oxide Based Process Development of DMC Synthesis Supported by the DOE SBIR Phase I, Phase II and Phase IIb Grants under DOE Contract No. DE-SC0013233. Ammonia-Based Process Development of DMC Synthesis Supported by the CCEMC-Alberta (now ERA) Round-1 Grand Challenge.

DOE NETL

Andy Aurelio, DOE Program Manager

Organization ChartGantt Chart

Organization Chart

Gantt Chart – SBIR Phase IIb

ID Task Name		Half 2, 2019	Half 1, 2020		Half 2, 2020	Half 1, 2021	Half 2
1 Milestones	M J	J A S O N	D J F M A M	JJ	A S O N D	J F M A M J	J A S
² Budget Perios 1			h				
³ Derformance model of the reactor						12/25	
4 ASPEN Plus process analysis of the integrated process			• 2/3				
⁵ Budget Period 2							
⁶ TFA of the integrated process						<mark>→</mark> 1/15	
7 I CA of the integrated process					♦ 11/13		
 ⁸ Design of Technology Demonstration Unit 						• 3/12	
⁹ Process Analysis							
¹⁰ ASPEN Plus analysis of EtO and ammonia based processes							
¹¹ Documentation of PFD and equipment list			•				
¹² Comparative process analysis							
¹³ Validation of the ASPEN Plus design model							
¹⁴ Oualification of Catalysts for Direct Conversion of CO2			•			+	
¹⁵ Characterization of catalyst effectiveness							
¹⁶ Merit Analysis to qualify catalyst(s)						•••••	
¹⁷ Determination of kinetic parameters of qualified catalyst(s)							
¹⁸ Performance of Adsorbent Catalytic Reactor (ACR)			-				
¹⁹ Performance tests of membrane reactor							
²⁰ Performance tests of adsorbent catalytic reactor					r t		
²¹ Development of performance model for theadsorbent catalytic reactor					+		
²² Incorporation of the performance model in to ASPEN Plus process model					• ••••		
²³ TEA of the Integrated Process					•	•	
²⁴ Estimation of CAPEX and OPEX							
²⁵ ProForma analysis to estimate IRR and NPV							
²⁶ TEA merit analysis of the integrated process vs. separate CO2 capture and							
conversion processes							
²⁷ Risk Register Management (RRM) matrix analysis						*	
²⁸ LCA of the Integrated Process					-		
²⁹ C-footprint analysis and comparison with separate CO2 capture and							
conversion processes							
³⁰ Update of the global market demands of DMC and its derived products							
³¹ Global CO2 abatement potentials with timeline							
³² Design of Integrated Pilot Plant Test Unit						· · · · · · · · · · · · · · · · · · ·	
³³ ASPEN Plus process design							
Estimation of capital and operating costs							
³⁵ Implementation Plan for Integrated Test Unit			-				
³⁰ Development of business plan							
⁵⁷ Implementation schedule							
³⁸ Project Management and Reporting							