Ammonium Looping with Membrane Absorber and Distributed Stripper for Enhanced Algae Growth (DE-FE0031921)

Heather Nikolic, Feng Zhu, Fritz Vorisek, Yaying Ji, Mark Crocker, and Kunlei Liu

University of Kentucky Center for Applied Energy Research Lexington, KY https://caer.uky.edu/power-generation/

U.S. Department of Energy

National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Carbon Utilization Research Project Review Meeting

August 30-31, 2021

Project Team and Funding

' W Center for Applied Energy Research

Project Objectives

Unique, integrated CO₂ capture and utilization technology that:

- Reduces the cost of CO₂ capture
- Boots algae production

Developing a transformative method for CO_2 capture and biofixation for large-scale application through:

- 1) Use of 2 M ammonium solution with chemical additives as both capture reagent and algae nutrient
- 2) Membrane absorber with minimal NH₃ emissions coupled with distributed, solarenergy powered strippers located near to bioreactors
- 3) Integration of solvent regeneration and just-in-time CO₂ and NH₃ delivery to algae for productivity enhancement

We Center for Applied Energy Research

Project Performance Dates

Task	Milestone Title & Description	Completion Date
1.0	Project Kickoff Meeting Held	12/7//2020
1.2	TMP Complete	1/17/2021
2.2	Membrane Absorber Integrated with Existing CCS	
5.0	Algae Production Evaluated	
6.1	Design Basis Report Completed	
6.2	Process Design Package Completed	
9.0	Integrated Process Installed	
10.0	Parametric Campaign Complete	
11.0	Long-term Campaign Complete	
12.4	TEA Complete	
13.0	TGA Complete	
14.0	LCA Complete	

caer.uky.edu

Background – Favorable Economics and In-situ Antifouling

A 50% reduction of reselling price for CO_2 from coal-fired power plants is achievable, as indicated by the red dot (< \$1/GGE).

- Flue gas condensate continually washes membrane surface
- In-situ anti-fouling
- NH₃ slip recapture
- Flue gas condensate utilized as makeup water

caer.uky.edu

Background – Enhanced Algae Growth

$$\begin{split} \text{NH}^{4+} \text{ consumption - excess } \text{CO}_2 \text{ present } (\text{NH}_4^+ \text{ limiting}): \\ & (\text{NH}_4)_2\text{CO}_3 \rightarrow \text{H}_2\text{CO}_3 \\ & \text{NH}_4\text{HCO}_3 \rightarrow \text{H}_2\text{CO}_3 \\ \text{CO}_2 \text{ consumption - excess } \text{NH}_4^+ \text{ present } (\text{CO}_2 \text{ limiting}): \\ & (\text{NH}_4)_2\text{CO}_3 + \text{H}_2\text{O} \rightarrow 2\text{NH}_4\text{OH} \\ & \text{NH}_4\text{HCO}_3 \rightarrow \text{NH}_4\text{OH} \end{split}$$

Left: 100,000 L cyclic flow PBR, Zhengzhou, China (2018). Center and Right: 1200 L cyclic flow PBR and 1100 L ORPs installed at Duke Energy's East Bend Station (2018).

Just-in-time C:N Delivery at Appropriate Ratio

- Minimal stress on algae with continuous CO_2/NH_3 feed
- Direct connection between stripper and bioreactor
- Amount of CO₂ and NH₃ in product stream controlled with stripper pressure and temperature
- Thermally compressed CO_2/NH_3 product stream facilitated sparging into bioreactors for high utilization efficiency
- Product stream can continue to be generated for short periods even if flue gas source is disrupted

Background – UK CAER CO₂ Capture and Utilization Facilities

Technology Under Development

Approach and Task Summary

Reduce CO₂ Capture Costs and Boost Algae Production

Task 3 – Absorber Performance Evaluation

Task 4 – Advanced Membrane Development

Task 5 – Algae Production Evaluation

- Design, Fabricate and Research a Membrane CO2AbsorberTask 2 Membrane Absorber
 - CO₂ Capture Efficiency
 - Continuous Operation
 - Ammonia Slip
- Evaluate Algae Production
 - CO₂:NH₃ ratio
 - pH
 - Productivity

• Design, Fabricate and Research Integrated Process

Parametric Campaign
 Long Term Campaign
 TEA
 TGA
 LCA
 BP2
 Develop
 TMP
 Task 6 – Integrated Process Design
 Task 7 – Integrated Process Test Plan
 Task 8 – Process Equipment Procurement
 Task 9 – Assembly
 Task 10 – Parametric Campaign
 Task 11 – Long-term Campaign
 Tasks 12, 13 & 14 – TEA, TGA and LCA

BP1

caer.uky.edu

Carbon Utilization Research Project Review Meeting

August 30-31, 2021

Technical Approach

Nutrient Feed to Algae Directly from Solvent Regeneration Step

Carbon Utilization Research Project Review Meeting

August 30-31, 2021

Technical Approach

Minimizing Ammonia Slip

Indirect Contact and Acid Washing using SO₂ in Flue Gas

Solvent Formulation to Reduce the Gas Phase Partial Pressure

$$\begin{split} &Zn^{2^+} + 4NH_3 \leftrightarrow \left[Zn(NH_3)_4\right]^{2^+} \\ &CO_2 + H_2O \leftrightarrow HCO_3^- + H^+ \\ &NH_3 + H_2O \leftrightarrow NH_4^+ + OH^- \\ &[Zn(NH_3)_4]^{2^+} + HCO_3^- \leftrightarrow [Zn(NH_2COO)_2]_2 + 2NH_3 + 2H_2O \\ &2NH_3 + CO_2 + H_2O \leftrightarrow (NH_4)_2CO_3 \end{split}$$

👯 Center for Applied Energy Research

Success Criterion	Percent Complete	Accomplishments
Demonstration of ppm levels of NH ₃ slip	20%	The ammonia slip can be reduced by addition
		of chelating organic additives.
Demonstration that 100-hour stable		
operation via ammonium salts formed on	100%	400-hour stable operation has been finished
gas side of membrane being washable by	10070	on the lab-scale membrane testing system.
flue gas condensate		
Demonstration that algae production is		Best algae growth rate in initial experiments
increased by 50% by continuous feed of	25%	is ~25% higher than rate obtained using
CO ₂ :NH ₃		conventional N sources (e.g., NaNO ₃).
Demonstration that capital and operating		
costs associated with CO_2 capture and	0%	Scheduled for BP2.
delivery are reduced by 50%		

Progress and Current Status – Lab-scale Testing Unit

Schematic Diagram of Lab-scale Testing Unit

Progress and Current Status – Ammonia Slip Rate Test

Ammonia slip rate test on CMS membrane

Established Ammonium Looping Test and Sampling Plan and sample testing SOP, repeatability verified by testing 3 batches of $1M NH_4OH+0.5M (NH_4)_2CO_3$ solutions

Batch	Solvent	Testing time (hr)	NH ₃ slip rate (ppm)
1	1M NH ₄ OH+0.5M (NH ₄) ₂ CO ₃	100	6345
2	1M NH ₄ OH+0.5M (NH ₄) ₂ CO ₃	100	5409
3	1M NH ₄ OH+0.5M (NH ₄) ₂ CO ₃	100	5795

Gas phase: 14% CO₂; Gas flow rate: 100 mL/min; Liquid flow rate: 80 mL/min; Pressure drop: 3-4 psi

Investigating the effect of organic additives on NH₃ slip rate

Try to reduce the NH₃ slip rate with addition of organic chelating agents like tetraethylene glycol dimethyl ether (TGDE) and 2-amino-2-methyl-1-propanol (AMP) in the feed solution

Batch	Solvent	Testing time (hr)	NH ₃ slip rate (ppm)
4	1M NH ₄ OH+0.5M (NH ₄) ₂ CO ₃ +1 wt% TGDE	50	5953
5	1M NH ₄ OH+0.5M (NH ₄) ₂ CO ₃ +20 wt% TGDE	50	5049
6	1M NH ₄ OH+0.5M (NH ₄) ₂ CO ₃ +10 wt% AMP	50	4826

Gas phase: 14% CO2; Gas flow rate: 100 mL/min; Liquid flow rate: 80 mL/min; Pressure drop: 4 psi

400-hour stable operation via ammonium salts formed on gas side of membrane being washable by flue gas condensate

Carbon Utilization Research Project Review Meeting

14

caer.uky.edu

Progress and Current Status: Composing of Ammonium Solution

Gas phase: compressed air; Gas flow rate: 50 mL/min Liquid phase: ammonium solution; Liquid flow rate: 50 mL/min

By replacing 50% of ammonium hydroxide with ammonium carbonate in the solvent, the NH_3 slip dropped from 2653 ppm to 1282 ppm due to the decline of NH_3 partial pressure.

Progress and Current Status: Bench Unit P&ID

- Purpose:
 - . NH_3 slip rate at bench scale
- 2. Monitor and resolve possible membrane blockage

Analysis method:

- Off-line analysis of ammonia concentration
- On-line monitor of pH changes
- On-line analysis of gas concentration

👯 Center for Applied Energy Research

Process Flow Diagram for Bench-Scale Absorption Unit

Progress and Current Status – Design of Flat Sheet Membrane Absorber

Bench Scale Membrane CO₂ Absorber

Machined Components of the Membrane CO₂ Absorber

Carbon Utilization Research Project Review Meeting

- Designed symmetric membrane CO₂ absorber for bench-scale testing to reduce gas-side pressure drop.
- Membrane absorber 6 inches wide x 24 inches deep, designed for 15 cfm and 2 second residence time.
- Liquid phase section part is shown partially machined.

caer.uky.edu

Progress and Current Status: Development of Flat Sheet Membrane

Substrate: Polyethersulfone (PES) membrane supported by polyester (PET) nonwoven fabric Modification material: 1 wt% Teflon AF2400 in FC-40 Solvent: Fluorinert[™] FC-40

Cross-section PTFE PES PET

Contact Angle:

Position	1	2	3	4	5	Average
PES surface	74	88				81
PES back	81					81
Dip-coating surface	113	122	119	122	115	118
Dip-coating back	134	127				131
Immersion surface	112	125	129	119	124	122
Immersion back	143	147				145

Teflon Hydrophobic Layer Obtained on Both Sides of PES Substrate

Carbon Utilization Research Project Review Meeting

Progress and Current Status – Bench Membrane Absorber

Hollow Fiber Membrane

Solvent Tank

Solvent Circulation Pump

Progress and Current Status – Algae Production Evaluation

- Objective: to examine the effect of a range of CO_2 :NH₃ mole ratios simulating the gas stream from the solar stripper on *Scenedesmus acutus* (UTEX B72) culture health and productivity
- Initial experiments performed in 800 mL bioreactors with constant gas sparging and four CO₂:NH₃ mole ratios, i.e., 7:1, 10:1, 14:1 and 18:1
- Initial pH increase attributed to superior NH₃ solubility (relative to CO₂)
- Irrespective of CO_2 :NH₃ ratio, pH tends towards ~9 before each harvest

Progress and Current Status: Algae Production Evaluation

- Growth rate obtained with 14:1 CO_2 :NH₃ ratio is same as that previously obtained using ammonium carbonate and ammonium bicarbonate as N-source, typical values being ~0.16 g L⁻¹ day⁻¹
- Fastest growth rate to date obtained using 10:1 CO₂:NH₃ ratio (~0.21 g L⁻¹ day⁻¹; experiment still on-going)

caer.uky.edu

Plans for Future Testing

- Implement gas phase sampling and testing method
- Conduct membrane performance parametric campaign on bench unit
- Finish integrated process design
- Increase total CO₂ and NH₃ flow at fixed CO₂ : NH₃ ratio (10 : 1) to increase algae growth rate
- Outdoor algae culturing in 1100 L ponds

Summary

Task Name	Percent Complete	Accomplishments
1.0 Project Management and Planning	N/A	 Submitted TMP. Submitted foreign national request and under review. Quarterly planning meeting according to the PMP. Conducted weekly project meetings with UK CAER team, discussing technical problems. Monthly briefing with NETL PM.
2.0 Membrane Absorber	40%	 Established Test and Sampling Plan and standard operating procedure (SOP) for NH₃ slip measurements. Complied piping and instrumentation diagrams (P&ID) for bench unit and integration unit. NH₃ slip can be reduced by addition of organic additives.
4.0 Advanced Membrane Development	10%	• Finished design of customized flat-sheet membrane module.
5.0 Algae Production Evaluation	25%	 Consistent growth demonstrated for <i>Scenedesmus acutus</i> fed with gaseous CO₂/NH₃. Growth rate for 10:1 CO₂:NH₃ exceeds that previously obtained using (NH₄)₂CO₃, nitrate or urea as N-source. NH₃ utilization efficiency is >80% in culturing experiments using 10:1 and 14:1 CO₂:NH₃ (CO₂ utilization efficiency varies but can be as high as ~60% in experiments to date)

Acknowledgements

The authors would like to express appreciation for the support from the U.S. Department of Energy National Energy Technology Laboratory.

Organization Chart

Gantt Chart

) [–]	Task Name	Start	Finish	Task Cost	2021 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q
1	1.0 Project Management and Planning	10/1/20	9/30/23	\$663,815	
2	Budget Period 1	10/1/20	3/31/22		
3	1.1 PMP	10/1/20	10/31/20		
4	1.2 TMP	10/1/20	12/31/20		
5	2.0 Membrane Absorber	10/1/20	3/31/21	\$260,644	
6	2.1 Absorber Specificaiton and Purchase	10/1/20	12/31/20		
7	2.2 Absorber Installation and Integration	12/30/20	3/31/21		-
8	3.0 Absorber Performance Evaluation	4/1/21	6/30/21	\$246,582	-
9	4.0 Advanced Membrane Development	6/1/21	8/31/21	\$ 79,418	-
10	5.0 Algae Production Evaluation	10/1/20	6/30/21	\$270,207	
11	6.0 Integrated Process Design	5/14/21	2/28/22	\$258,228	
12	6.1 Design Basis	5/14/21	8/31/21		
13	6.2 Design Package	8/30/21	2/28/22		
14	7.0 Integrated Process Test Plan	1/1/22	3/31/22	\$ 60,763	-
15	Budget Period 2	4/1/22	9/30/23		
16	8.0 Process Equipment Procurement	4/1/22	6/30/22	\$ 88,555	
17	9.0 Assembly	7/1/22	9/30/22	\$ 89,408	
18	10.0 Integrated Process Parametric Campaign	9/1/22	10/31/22	\$136,439	
19	11.0 Long-term Campaign	12/1/22	8/31/23	\$763,957	
20	12.0 TEA	4/1/22	9/30/23	\$540,932	
21	12.1 Process Flow and Modeling	4/1/22	9/30/23		
22	12.2 Membrane Modeling	12/1/22	3/31/23		
23	12.3 Equipment Sizing and Cost Estimation	4/1/23	5/31/23		
24	12.4 TEA	6/1/23	9/30/23		
25	13.0 TGA	4/1/23	6/30/23	\$ 75,702	
26	14.0 LCA	11/1/22	7/31/23	\$216,677	

26

Carbon Utilization Research Project Review Meeting