A highly efficient microalgaebased carbon sequestration system to reduce CO₂ emission from power plant flue gases DE-FE0031914

Yantao Li

University of Maryland Center for Environmental Science

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

- Funding
 - DOE: \$3,000,000 and Cost Share: \$750,000
- Overall Project Performance Dates:

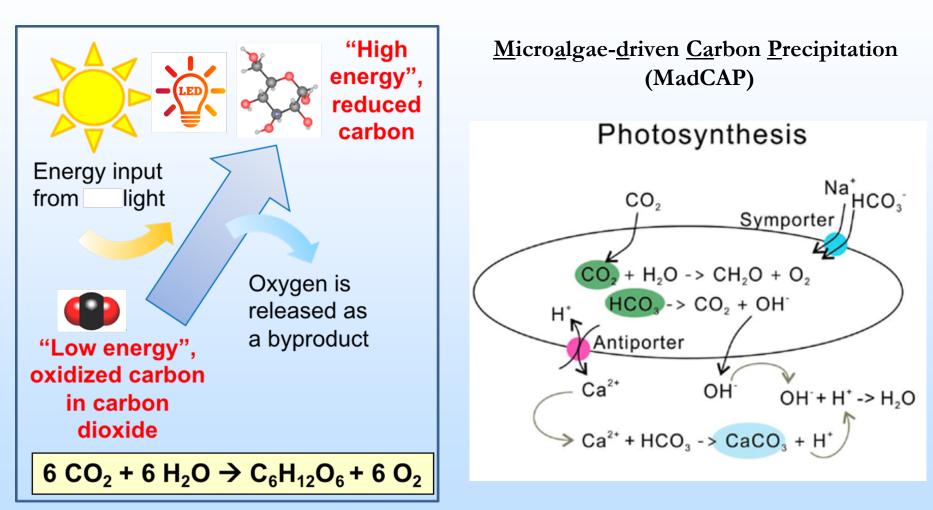
Sep. 2020 to Sep. 2023

- Project Participants:

Yantao Li, Feng Chen, Russell Hill, University of Maryland Center for Environmental Science;

Robert Mroz, HY-TEK Bio, LLC;

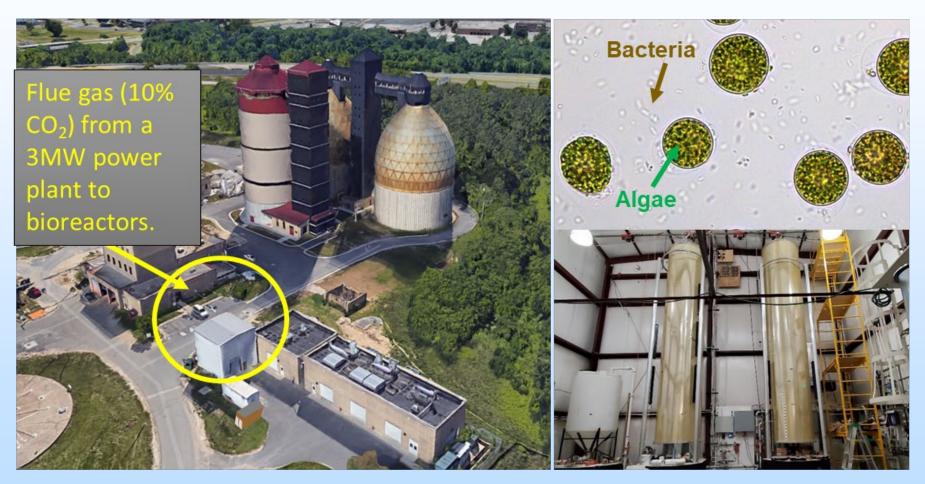
Troy Hawkins and Sudhanya Banerjee, Argonne National Laboratory



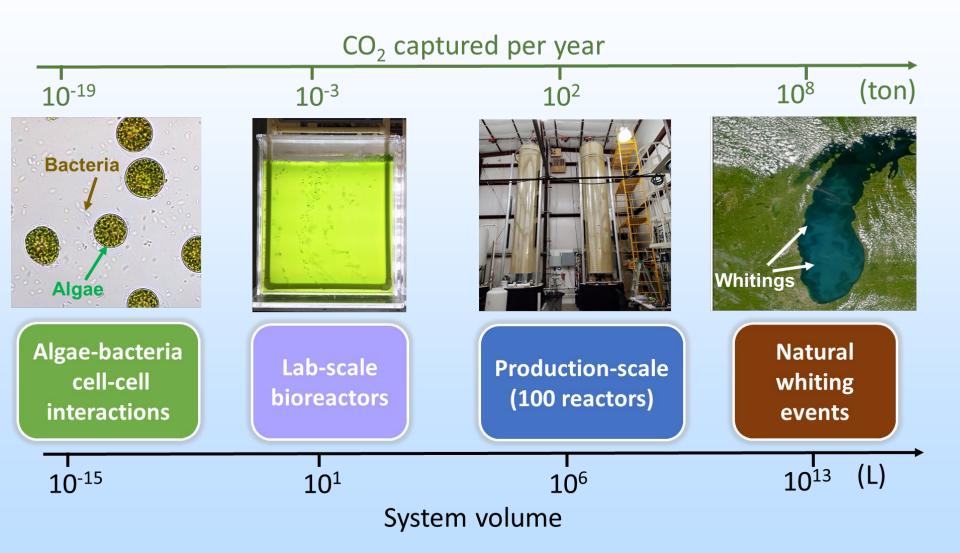
Project Overview

- Overall Project Objectives

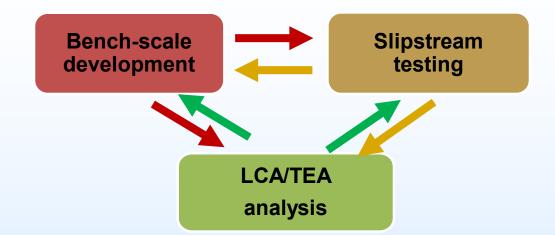
The objective of this project is to harness the power of photosynthetic microalgae to maintain a high-pH, high-alkalinity microalgal culture to create a carbonnegative system for carbon dioxide (CO_2) conversion to value-added products from power plant flue gas. The bench-scale system will be demonstrated on flue gas containing 8 to 12% CO_2 .


Technology Background

Williams, M.E. (July 31, 2016). Carbon-Fixing Reactions of Photosynthesis. The Plant Cell, doi/10.1105/tpc.116.tt0716.


Adapted from Zhu and Dittrich 2016 Frontiers in Bioeng and Biotech.

Technology Background: Microalgae Driven Carbon Capture



The bioreactor facility of the Back River Waste Water Treatment Plant

Technology Background: Microalgae Driven Carbon Capture

Technical Approach/Project Scope

Bench-scale development of a saltwater and a freshwater system (UMCES)

- Subtask 2.1; 3.1; 4.1: Saltwater algal carbon sequestration system (Li and Hill)
- Subtask 2.2; 3.1; 4.1: Freshwater algal carbon sequestration (Chen and Hill)

Slipstream testing of the algal carbon sequestration system (HY-TEK Bio)

- Subtask 2.3; 3.2; 4.2: Slipstream test at 500 L (Mroz)
- Subtask 3.3; 4.3: Slipstream test at 6,800 L (Mroz)

Development of TEA and LCA models to evaluate and guide (Argonne)

Subtask 2.4; 3.4; 4.4: Perform TEA and LCA analysis (Hawkins and Banerjee)

Technical Approach/Project Scope

Efficient carbon sequestration in the lab and during slipstream testing at the Back River Wastewater Treatment Plant.

Production of algal biomass optimized for lutein/zeaxanthin production and/or biofuels.

Aggressive publication and IP protection plan to facilitate future licensing arrangements and/or partnering opportunities.

Involvement of key industrial partners to accelerate commercialization of technology.

Progress- Budget Period 1

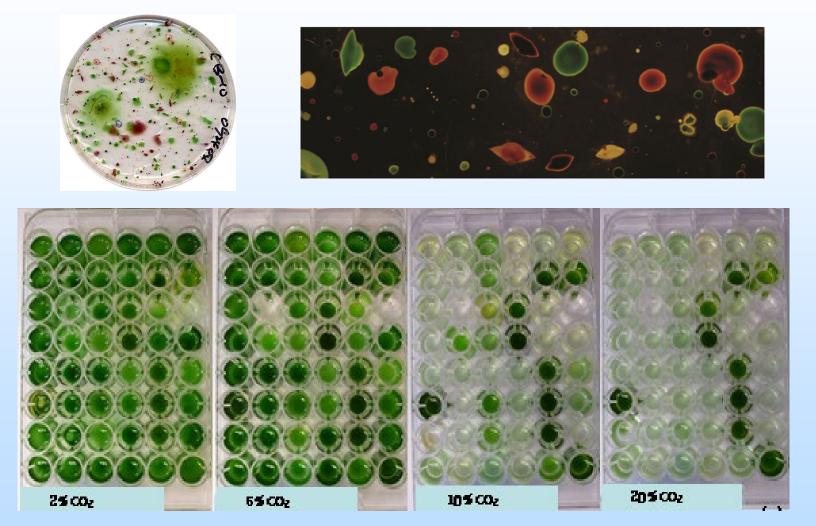
Subtask 2.1 - Develop a saltwater algal carbon sequestration system at lab scale

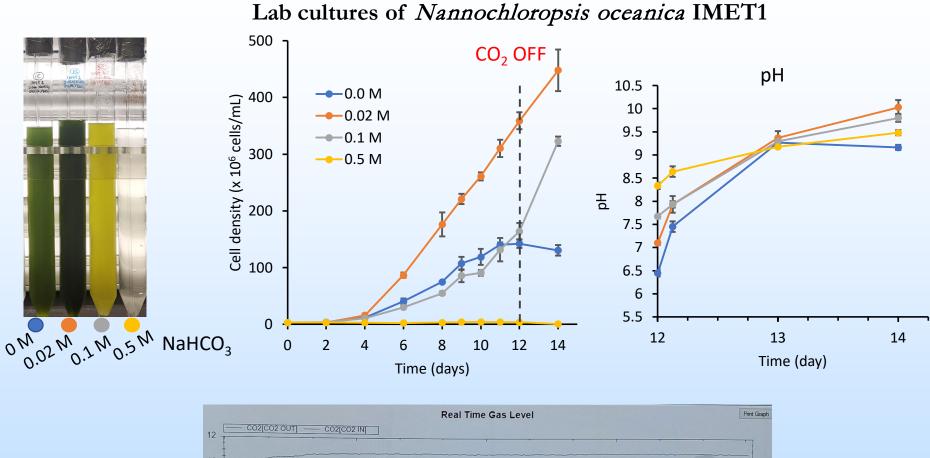
• Grow the *Nannochloropsis oceanica* IMET1 with NaHCO₃ and simulated flue gas

Milestone 2.1 Achieve >90% mitigation efficiency of each algae at lab scale. M12

Subtask 2.2 - Develop a freshwater algal carbon sequestration system at lab scale

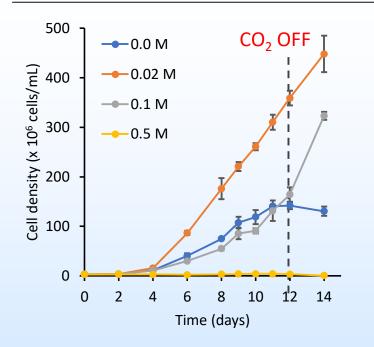
• Grow the Scenedesmus obliquus HTB1 with NaHCO₃ and simulated flue gas

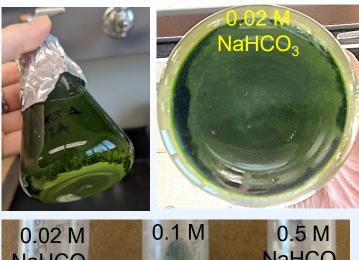

Milestone 2.2 Achieve >90% mitigation efficiency of each algae at lab scale. M12

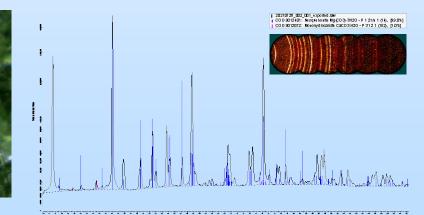


Progress- Budget Period 1 Algal Strain Selection

Nannochloropsis oceanica IMET1 and Scenedesmus obliquus HTB1 were selected




Progress- Budget Period 1 Lab culture at 10% CO₂


Time

Progress- Budget Period 1 Lab culture at 10% CO₂

0.02 M

Nasquehonite

Subtask 2.3 – Initial slipstream testing at 500-L scale

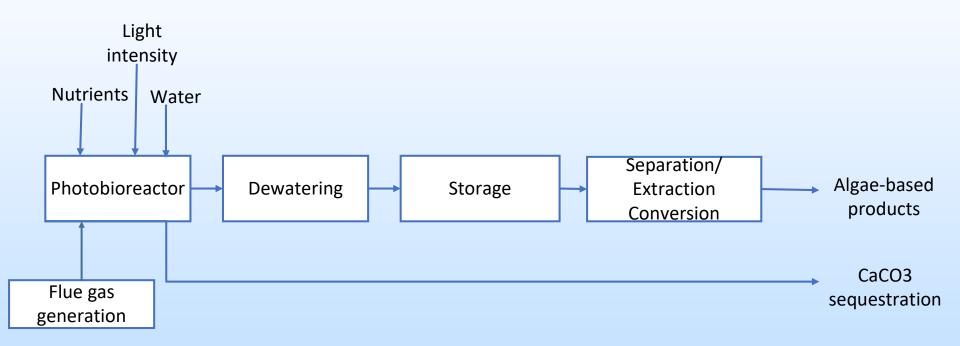
 Grow saltwater and freshwater cultures non-axenically in 500-L bioreactors with flue gas.

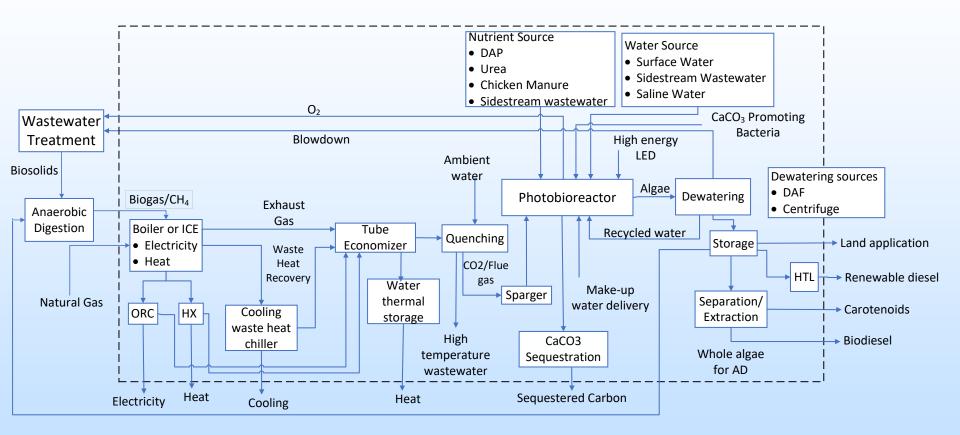
Milestone 2.3 Achieve >90% mitigation efficiency at 500-L scale. M12

Subtask 2.4 - Develop the frameworks for the TEA and LCA models Milestone 2.4 Develop frameworks for the TEA and LCA models. M12

Progress- 500-L scale test, Flue Gas Capture Line to the Natural Gas Boiler

Boiler Stacks

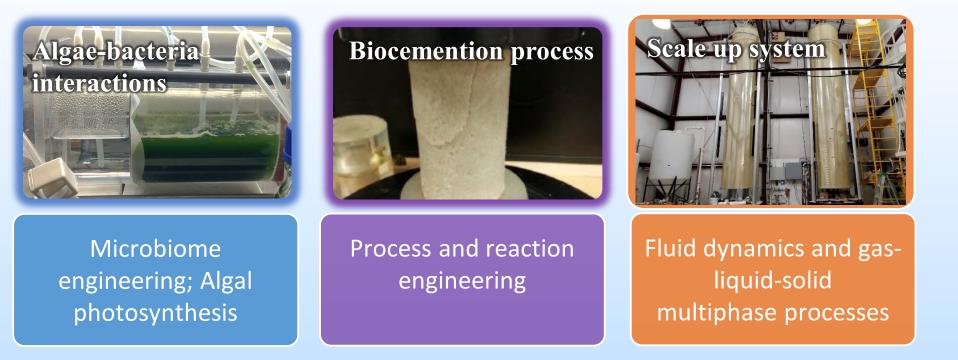

Progress- 500-L scale test


Progress- LCA/TEA

To perform LCA and TEA analysis of advanced algae-based CCS pathway

Progress- LCA/TEA

SYSTEM BOUNDARY


Plans for future work- BP2

1) Bench-scale optimization of the laboratory and 500-L algal carbon sequestration system;

2) Use an iterative modification and validation process to scale up to slipstream testing of the algal carbon sequestration system at a 6,800-L scale on power plant flue gas; and

3) Describe the potential cost, energy, and environmental metrics associated with scaling the system to 500-L.

Plans for future work

Summary Slide

- Our freshwater *Scenedesmus* and seawater
 Nannochloropsis systems are able to capture CO₂ at >95%
 efficiency when grown with 10% CO₂ source
- Algae capture CO₂ in the form of algae biomass and carbonate precipitations, e.g., CaCO₃ or MgCO₃ depending on the culture conditions.
- Working on scaling up tests with boiler flue gas in case the engine flue gas shut off.

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

No.	/Tasks	/Subtasks and PIs responsible for the task	Teams responsible UMCES is the lead on this task.			
1	Project Management and Planning	 Project Management Plan (All PIs) Technology Maturation Plan (All PIs) 				
2	Bench-scale development of a saltwater and a freshwater system	 Saltwater algal carbon sequestration system (Li and Hill, UMCES) Freshwater algal carbon sequestration (Chen and Hill, UMCES) 	UMCES is the lead on this task.			
3	Slipstream testing of the algal carbon sequestration system	 Slipstream test at 500 L scale (Mroz, HY-TEK Bio, LLC) Slipstream test at 6,800 L scale (Mroz, HY- TEK Bio, LLC) 	HY-TEK Bio, LLC is the lead on this task.			
4	Development of TEA and LCA models to evaluate and guide research and testing activities.	 Develop the frameworks for the TEA and LCA models (<i>Hawkins and Banerjee, Argonne National Lab</i>) Perform hotspot analysis, benchmark against other carbon capture and biofuel processes, (<i>Hawkins and Banerjee, Argonne National Lab</i>) 	Argonne National lab is the lead on this task. 22			

Gantt Chart

Task	2	020	-202	21	2021-2022				2022-2023			
Budget period			get period 1		Budget period 2			Budget period 3				
5 -		lont	h 1-	12)	(M	lonth	13-	24)	(M	lont	h 25-	36)
Task 1.0 Project Management												
1.1 Project Management Plan												
Milestones 1.1.1												
1.2 Tech Maturation Plan												
Milestones 1.2.1												
Task 2.0 Bench-scale development												
2.1 Seawater system												
Milestones 2.1.1												
2.2 Freshwater system												
Milestones 2.2.1												
2.3 Initial 500-L test												
Milestones 2.3.1												
2.4 Frameworks of TEA and LCA												
Milestones 2.4.1												
Task 3.0 Optimization and												
slipstream test												
3.1 Lab-scale optimization												
Milestones 3.1.1												
3.2 Slipstream test at 500 L												
Milestones 3.2.1												
3.3 Initial 6,800-L test												
Milestones 3.3.1												
3.4 TEA and LCA analysis												
Milestones 3.4.1												
Milestones 3.4.2												
Task 4.0 Optimization and full-scale												
test												
4.1 Lab-scale optimization												
Milestones 4.1.1												
Milestones 4.1.2												
4.2 Slipstream test at 500 L												
Milestones 4.2.1												
4.3 Slipstream test at 6,800-L												
Milestones 4.3.1												
4.4 Frameworks of TEA and LCA												
Milestones 4.4.1												

Milestone Go-No Go