Dehydration Membrane Reactor for Direct Production of Dimethyl Carbonate (DMC) from CO$_2$ and H$_2$

Shiguang Li, Gas Technology Institute (GTI)
Xinhua Liang, Missouri University of Science and Technology (Missouri S&T)
Miao Yu, University at Buffalo, The State University of New York (UB)

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Management and Natural Gas & Oil Research Project Review Meeting
Virtual Meetings, August 31, 2021
Project overview

- **Performance period**: Jan. 1, 2021 – Dec. 31, 2022
- **Total funding**: $1,269,664 (DOE: $1.0 MM, Cost share: $269,664)
- **Objectives**: Develop a unique catalytic membrane reactor for producing a valuable liquid product, dimethyl carbonate (DMC) from captured CO₂ and H₂
 - DMC is used predominately in polycarbonate production. Its market is projected to grow from $895 million in 2019 to $1,207 million by 2024, at a CAGR of 6.2% from 2019 to 2024
- **Goal**: Achieve CO₂ conversion >50%, DMC selectivity >60%, and production rate of 600 g_{DMC}/kg_{cat}/h

Team:

<table>
<thead>
<tr>
<th>Member</th>
<th>Roles</th>
</tr>
</thead>
</table>
| gti | • Lead on project management and planning
 | • Lead on membrane reactor parametric and deactivation tests
 | • Lead on detailed techno-economic and life-cycle analyses |
| UB | • Lead on membrane and module development
 | • Lead on catalytic membrane reactor design, testing, and optimization
 | • Supporting techno-economic and life-cycle analyses |
| S&T | • Lead on catalyst development
 | • Supporting techno-economic and life-cycle analyses |
One-step process intensifies a process that would otherwise require multiple reaction steps:

- Methanol production: \(\text{CO}_2 + 3\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH} + \text{H}_2\text{O} \) \(\Delta H^0 = -49 \text{ kJ/mol} \) Catalyst 1: CuO/ZnO/Al\(_2\)O\(_3\) based
- DMC synthesis: \(2\text{CH}_3\text{OH} + \text{CO}_2 \rightleftharpoons (\text{CH}_3\text{O})_2\text{CO} + \text{H}_2\text{O} \) \(\Delta H^0 = -17.3 \text{ kJ/mol} \) Catalyst 2: CeO\(_2\) based
- Combined reaction: \(3\text{CO}_2 + 6\text{H}_2 \rightleftharpoons (\text{CH}_3\text{O})_2\text{CO} + 3\text{H}_2\text{O} \)

Consumes three moles of CO\(_2\) for every mole of DMC formed

Recently developed Na\(^+\)-gated membrane (Science, vol. 367, pp. 667, 2020) removes water \textit{in situ}, shifting the equilibrium towards product formation, while decreasing kinetic inhibition from water adsorption onto the catalyst surface.
Palladium-CuO/ZnO/Al$_2$O$_3$ (Pd-CZA) catalyst developed for methanol synthesis

TEM image: uniform nanoscale particles (ca. 15 nm)

EDX mapping: elements of Cu, Pd, O, Al, Zn homogeneously dispersed

TEM: Transmission Electron Microscopy; EDX: Energy-dispersive X-ray Spectroscopy
0.9Pd/CZA shows the highest CO\textsubscript{2} conversion and methanol yield during methanol synthesis using packed bed reactor

Reaction conditions: T = 140-240°C, P = 2.8 MPa, H\textsubscript{2}/CO\textsubscript{2} molar ratio at 3:1, GHSV = 2,880 mL/(g\textsubscript{cat}·h)

GHSV: Gas Hourly Space Velocity
CeO$_2$-based catalyst developed for DMC synthesis

TEM image: nanorods catalyst

TEM: Transmission Electron Microscopy; XRD: X-ray Diffraction
Breakthrough development of Na+-gated, nanochannel membrane for dehydration

Na+-gated water-conducting nanochannels for boosting CO\textsubscript{2} conversion to liquid fuels

Huazheng Li, Chenglong Qiu, Shoujie Ren, Qiaobei Dong, Shenxiang Zhang, Fanglei Zhou, Xinhua Liang, Jianguo Wang, Shiguang Li and Miao Yu

Na+ neutralizes the negatively charged NaA framework and position inside zeolite nanocavities, allowing fast transport of small H\textsubscript{2}O molecules, whereas blocking the permeation of larger molecules, such as H\textsubscript{2}, CO\textsubscript{2}, CO, and methanol.
SEM, EDX and XRD analyses indicate uniform membrane layer with intergrown crystals and LTA structure

Surface SEM:
Intergrown crystals for the membrane layer

Cross sectional SEM: membrane thickness of 3-4 µm

EDX: membrane contains Si, Al, and Na

XRD: zeolite LTA structure for the membrane

Membrane shows high flux and selectivity for dehydration with a feed of \(\text{H}_2\text{O}/\text{CO}_2/\text{CO}/\text{H}_2/\text{methanol} \)

- **Other selectivities**
 - \(\text{H}_2\text{O}/\text{H}_2 > 190 \)
 - \(\text{H}_2\text{O}/\text{CO} > 170 \)
 - \(\text{H}_2\text{O}/\text{MeOH} > 80 \)
 - \(\text{H}_2\text{O}/\text{DMC}: \text{not tested yet, but expected to be} >200 \)

Kinetic diameters:
- DMC: 0.63 nm
- Methanol: 0.36 nm
- \(\text{CO}_2 \): 0.33 nm
- \(\text{H}_2 \): 0.289 nm
Methanol synthesis and DMC synthesis in membrane reactor

- Membrane reactor methanol synthesis from CO\textsubscript{2} and H\textsubscript{2} using a CZA-based catalyst
 - Compared to a traditional packed bed reactor (TR) without membrane, both CO\textsubscript{2} conversion and methanol yield increased 3 times

- Membrane reactor DMC synthesis from methanol and CO\textsubscript{2} using a CeO\textsubscript{2}-based catalyst
 - CO\textsubscript{2} conversion of 21.8\% and DMC productivity as high as 1.16 g/h/g\textsubscript{cat}. In contrast, no CO\textsubscript{2} conversion was observed in packed bed reactor indicating the great advantage of using Na+-gated membrane for dehydration
Technical challenge – the presence of 1st reaction catalyst (CZZA) may cause consumption of DMC by hydrogenation

- **Mitigation strategy**: coating the external surface of CZZA catalyst (pore size: 0.4-0.6 nm) to prevent DMC hydrogenation by the CO₂ hydrogenation catalyst (CZZA) while still allowing free access of CO₂ and H₂ to the catalyst surface.

- **Liquid-phase interfacial reaction to form microporous coatings on porous materials**

- **Coating pore size adjustment by controlling synthesis conditions**

Kinetic diameters:
- DMC: 0.63 nm
- Methanol: 0.36 nm
- CO₂: 0.33 nm
- H₂: 0.289 nm
Roadmap of the current project

Task 1 Project management and planning (*throughout the project*)

Catalyst Development
- **Task 2** – Preparation, characterization, and optimization of catalysts
- **Task 4** – Coated catalyst development and catalytic performance evaluation
- **Task 6** – Optimization of bifunctional catalyst

Membrane Reactor Testing
- **Task 3** – Baseline membrane reactor testing and optimization
- **Task 5** – Bifunctional membrane reactor testing and optimization
- **Task 7** – Membrane reactor parametric and deactivation tests
- **Task 8** – Detailed techno-economic and life-cycle analyses

Year 1 (12 months)

Year 2 (12 months)
Milestones and success criteria

<table>
<thead>
<tr>
<th>#</th>
<th>Task/ Subtask</th>
<th>Milestone Title/Description</th>
<th>Planned Completion Date</th>
<th>Actual Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1</td>
<td>1</td>
<td>Submit updated Project Management Plan to DOE</td>
<td>2/28/21</td>
<td>2/18/21</td>
</tr>
<tr>
<td>M1.2</td>
<td>1</td>
<td>Complete Kickoff Meeting</td>
<td>3/31/21</td>
<td>3/19/21</td>
</tr>
<tr>
<td>M1.3</td>
<td>1</td>
<td>Submit technology maturation plan to DOE</td>
<td>3/31/21</td>
<td>3/23/21</td>
</tr>
<tr>
<td>M2.1</td>
<td>2</td>
<td>Ship >20 g of catalysts w/ BET surface area >100 m²/g to RPI from MS&T</td>
<td>6/30/21</td>
<td></td>
</tr>
<tr>
<td>M3.1</td>
<td>3</td>
<td>Achieve CO₂ conversion >20%, DMC selectivity >20%, DMC production rate >200 g₃DMC/kgₙcat/h at 140-220°C and 25-35 bar</td>
<td>6/30/21</td>
<td></td>
</tr>
<tr>
<td>M4.1</td>
<td>4.1</td>
<td>Complete development of coated CZZA-based catalyst with coating layer thickness <0.5 mm and pore size between 0.4 and 0.6 nm</td>
<td>12/30/21</td>
<td></td>
</tr>
<tr>
<td>M4.2</td>
<td>4.2</td>
<td>Achieve CO₂ conversion >15% and methanol yield >10% in methanol synthesis at 140-220°C and 25-35 bar for the coated CZZA-based catalyst using a fixed bed reactor</td>
<td>12/30/21</td>
<td></td>
</tr>
<tr>
<td>M5.1</td>
<td>5</td>
<td>Achieve CO₂ conversion >40%, DMC selectivity >50%, DMC production rate >500 g₃DMC/kgₙcat/h at 140-220°C and 25-35 bar</td>
<td>9/30/22</td>
<td></td>
</tr>
<tr>
<td>M6.1</td>
<td>6</td>
<td>Achieve CO₂ conversion >20% and methanol yield >12% in methanol synthesis at 140-220°C and 25-35 bar for the coated CZZA-based catalyst using a fixed bed reactor</td>
<td>9/30/22</td>
<td></td>
</tr>
<tr>
<td>M7.1</td>
<td>7</td>
<td>Complete 100-500 hours continuous testing; achieve steady-state CO₂ conversion >50%, DMC selectivity >60%, and DMC production rate >600 g₃DMC/kgₙcat/h at 140-220°C and 25-35 bar</td>
<td>12/30/22</td>
<td></td>
</tr>
<tr>
<td>M8.1</td>
<td>8</td>
<td>Issue Final TEA report with a Technology Gap Analysis</td>
<td>12/30/22</td>
<td></td>
</tr>
<tr>
<td>M8.2</td>
<td>8</td>
<td>Issue Final LCA report</td>
<td>12/30/22</td>
<td></td>
</tr>
<tr>
<td>M1.4</td>
<td>1</td>
<td>Submit Final Technical Report</td>
<td>3/30/23</td>
<td></td>
</tr>
</tbody>
</table>
Technology development path

DME: \(2\text{CO}_2 + 6\text{H}_2 \rightleftharpoons \text{CH}_3\text{OCH}_3 + 3\text{H}_2\text{O}\)
DMC: \(3\text{CO}_2 + 6\text{H}_2 \rightleftharpoons (\text{CH}_3\text{O})_2\text{CO} + 3\text{H}_2\text{O}\)
Summary

▪ We are developing a catalytic membrane reactor technology for production of DMC, which consumes three moles of CO$_2$ for every mole of DMC formed
 ▪ Bifunctional catalyst designed to combine two reactions, methanol formation and dehydration, enabling higher overall CO$_2$ conversion
 ▪ Na$^+$-gated nanochannel membrane designed to remove water \textit{in situ}, shifting equilibrium towards product formation

▪ \textbf{Progress to date:}
 ▪ Catalysts and membranes prepared
 ▪ Methanol synthesis and DMC synthesis were separately studied in membrane reactor, which showed much higher CO$_2$ conversion and product yield than traditional packed bed reactors

▪ \textbf{Next step} is to develop coated catalyst and test bifunctional membrane reactor
Acknowledgements

- Financial and technical support

![U.S. Department of Energy][1] [NETL][2] DE-FE0031909

- DOE NETL: Andrea McNemar and Andrew O'Palko
Appendix – Organization chart

DOE NETL
Project Manager
Project oversight

GTI
Ms. Kate Jauridez
Contract administrator

GTI
Dr. Shiguang Li - *PI*
- Coordinate project activities
- Project management

GTI
Mr. Howard Meyer
Project QA/QC

MS&T
Dr. Xinhua Liang
Catalyst development

UB
Dr. Miao Yu
Membrane reactor design, testing, and optimization

GTI
Mr. Travis Pyrzynski
Parametric and deactivation tests

GTI
Dr. Sekar Darujati
TEA and LCA
Appendix – Gantt chart
Disclaimer

This presentation was prepared by GTI as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.