gti. DOE Contract DE-FE0031909 Dehydration Membrane Reactor for Direct Production of Dimethyl Carbonate (DMC) from CO₂ and H₂

Shiguang Li, Gas Technology Institute (GTI)

Xinhua Liang, Missouri University of Science and Technology (Missouri S&T)

Miao Yu, University at Buffalo, The State University of New York (UB)

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings, August 31, 2021

Project overview

- Performance period: Jan. 1, 2021 Dec. 31, 2022
- Total funding: \$1,269,664 (DOE: \$1.0 MM, Cost share: \$269,664)
- <u>Objectives</u>: Develop a unique catalytic membrane reactor for producing a valuable liquid product, dimethyl carbonate (DMC) from captured CO₂ and H₂
 - DMC is used predominately in polycarbonate production. Its market is projected to grow from \$895 million in 2019 to \$1,207 million by 2024, at a CAGR of 6.2% from 2019 to 2024
- <u>Goal</u>: Achieve CO₂ conversion >50%, DMC selectivity >60%, and production rate of 600 g_{DMC}/kg_{cat}/h

• <u>Team</u> :	Member	Roles	
	gti	 Lead on project management and planning Lead on membrane reactor parametric and deactivation tests Lead on detailed techno-economic and life-cycle analyses 	
	Le	 Lead on membrane and module development Lead on catalytic membrane reactor design, testing, and optimization Supporting techno-economic and life-cycle analyses 	
	MISSOURI	 Lead on catalyst development Supporting techno-economic and life-cycle analyses 	

Technology description

- One-step process intensifies a process that would otherwise require multiple reaction steps:
 - Methanol production: $CO_2 + 3H_2 \Rightarrow CH_3OH + H_2O$ $\Delta H^0 = -49 \text{ kJ/mol}$ Catalyst 1: CuO/ZnO/Al₂O₃ based
 - DMC synthesis: $2CH_3OH + CO_2 \Rightarrow (CH_3O)_2CO + H_2O$ $\Delta H^0 = -17.3 \text{ kJ/mol}$ Catalyst 2: CeO_2 based
 - Combined reaction: $3CO_2 + 6H_2 \Rightarrow (CH_3O)_2CO + 3H_2O$
- Consumes three moles of CO₂ for every mole of DMC formed
- Recently developed Na⁺-gated membrane (Science, vol. 367, pp. 667, 2020) removes water in situ, shifting the equilibrium towards product formation, while decreasing kinetic inhibition from water adsorption onto the catalyst surface

Palladium-CuO/ZnO/Al₂O₃ (Pd-CZA) catalyst developed for methanol synthesis

TEM image: uniform nanoscale particles (ca. 15 nm)

EDX mapping: elements of Cu, Pd, O, Al, Zn homogeneously dispersed

TEM: Transmission Electron Microscopy; EDX: Energy-dispersive X-ray Spectroscopy

0.9Pd/CZA shows the highest CO₂ conversion and methanol yield during methanol synthesis using packed bed reactor

Reaction conditions: T = 140-240°C, P = 2.8 MPa, H_2/CO_2 molar ratio at 3:1, GHSV = 2,880 mL/(g_{cat} -h)

CeO₂-based catalyst developed for DMC synthesis

TEM image: nanorods catalyst

Breakthrough development of Na⁺-gated, nanochannel membrane for dehydration

Science

Na⁺-gated water-conducting nanochannels for boosting CO₂ conversion to liquid fuels

Huazheng Li, Chenglong Qiu, Shoujie Ren, Qiaobei Dong, Shenxiang Zhang, Fanglei Zhou, Xinhua Liang, Jianguo Wang, Shiguang Li and Miao Yu

Science **367** (6478), 667-671. DOI: 10.1126/science.aaz6053

Na⁺ neutralizes the negatively charged NaA framework and position inside zeolite nanocavities, allowing fast transport of small H₂O molecules, whereas blocking the permeation of larger molecules, such as H₂, CO₂, CO, and methanol

SEM, EDX and XRD analyses indicate uniform membrane layer with intergrown crystals and LTA structure

Surface SEM: Intergrown crystals for the membrane layer

Cross sectional SEM: membrane thickness of 3-4 μm

EDX: membrane contains Si, Al, and Na

XRD: zeolite LTA structure for the membrane

Membrane shows high flux and selectivity for dehydration with a feed of $H_2O/CO_2/CO/H_2$ /methanol

Other selectivities

- $H_2O/H_2 > 190$
- H₂O/CO > 170
- H₂O/MeOH > 80
- H₂O/DMC: not tested yet, but expected to be >200

Kinetic diameters:

- DMC: 0.63 nm
- Methanol: 0.36 nm
- CO₂: 0.33 nm
- H₂: 0.289 nm

9

Methanol synthesis and DMC synthesis in membrane reactor

- Membrane reactor methanol synthesis from CO₂ and H₂ using a CZA-based catalyst
 - Compared to a traditional packed bed reactor (TR) without membrane, both CO₂ conversion and methanol yield increased 3 times
 - indicating the great advantage of using Na⁺-gated 70membrane for dehydration 30 60 Equilibrium conversion (%) 1200 conversion, % DMC productivity (mg/h/g_{cat}) % 25 50 50 1000 yield 20 $40 \cdot$ 800 Methanol CO₂ 15 30 30 600 CO_2 conversion CO_{2} and 10 2020 400 Methanol conversion Methanol 5 10- 10 200 0 220 200210230 240 250 8 10 6 n Temperature, °C Molar ratio of methanol to CO_2

Membrane reactor DMC synthesis from methanol

high as 1.16 g/h/ g_{cat} . In contrast, no CO₂

CO₂ conversion of 21.8% and DMC productivity as

conversion was observed in packed bed reactor

and CO₂ using a CeO₂-based catalyst

Technical challenge – the presence of 1st reaction catalyst (CZZA) may cause consumption of DMC by hydrogenation

 Mitigation strategy: coating the external surface of CZZA catalyst (pore size: 0.4-0.6 nm) to prevent DMC hydrogenation by the CO₂ hydrogenation catalyst (CZZA) while still allowing free access of CO₂ and H₂ to the catalyst surface

 Liquid-phase interfacial reaction to form microporous coatings on porous materials

 Coating pore size adjustment by controlling synthesis conditions

Roadmap of the current project

Milestones and success criteria

#	Task/ Subtask	Milestone Title/Description	Planned Completion Date	Actual Completion Date
M1.1	1	Submit updated Project Management Plan to DOE	2/28/21	2/18/21
M1.2	1	Complete Kickoff Meeting	3/31/21	3/19/21
M1.3	1	Submit technology maturation plan to DOE	3/31/21	3/23/21
M2.1	2	Ship >20 g of catalysts w/ BET surface area >100 m ² /g to RPI from MS&T	6/30/21	
M3.1	3	Achieve CO ₂ conversion >20%, DMC selectivity >20%, DMC production rate >200 g _{DMC} /kg _{cat} /h at 140-220°C and 25-35 bar	6/30/21	
M4.1	4.1	Complete development of coated CZZA-based catalyst with coating layer thickness <0.5 mm and pore size between 0.4 and 0.6 nm	12/30/21	
M4.2	4.2	Achieve CO_2 conversion >15% and methanol yield >10% in methanol synthesis at 140- 220°C and 25-35 bar for the coated CZZA-based catalyst using a fixed bed reactor	12/30/21	
M5.1	5	Achieve CO ₂ conversion >40%, DMC selectivity >50%, DMC production rate >500 g _{DMC} /kg _{cat} /h at 140-220°C and 25-35 bar	9/30/22	
M6.1	6	Achieve CO_2 conversion >20% and methanol yield >12% in methanol synthesis at 140-220°C and 25-35 bar for the coated CZZA-based catalyst using a fixed bed reactor	9/30/22	
M7.1	7	Complete 100-500 hours continuous testing; achieve steady-state CO ₂ conversion >50%, DMC selectivity >60%, and DMC production rate >600 g _{DMC} /kg _{cat} /h at 140-220°C and 25-35 bar	12/30/22	
M8.1	8	Issue Final TEA report with a Technology Gap Analysis	12/30/22	
M8.2	8	Issue Final LCA report	12/30/22	
M1.4	1	Submit Final Technical Report	3/30/23	

Technology development path

Summary

- We are developing a catalytic membrane reactor technology for production of DMC, which consumes three moles of CO₂ for every mole of DMC formed
 - Bifunctional catalyst designed to combine two reactions, methanol formation and dehydration, enabling higher overall CO₂ conversion
 - Na⁺-gated nanochannel membrane designed to remove water *in situ*, shifting equilibrium towards product formation
- Progress to date:
 - Catalysts and membranes prepared
 - Methanol synthesis and DMC synthesis were separately studied in membrane reactor, which showed much higher CO₂ conversion and product yield than traditional packed bed reactors
- Next step is to develop coated catalyst and test bifunctional membrane reactor

Acknowledgements

Financial and technical support

DOE NETL: Andrea McNemar and Andrew O'Palko

Appendix – Organization chart

Appendix – Gantt chart

Otr 4

	Task	SubT	MS	Task Name	Start	Finish
1	1.0			Project Management and Planning	Fri 1/1/21	Fri 3/31/23
2	1	1.01		Project Management Plan	Fri 1/1/21	Sat 12/31/22
3	1		M1.1	Submit updated Project Management Plan to DOE	Sun 2/28/21	Sun 2/28/21
4	1		M1.2	Complete Kickoff Meeting	Tue 3/30/21	Tue 3/30/21
5	1		M1.4	Submit Final Technical Report	Fri 3/31/23	Fri 3/31/23
6	1	1.02		Technology Maturation Plan	Fri 1/1/21	Sat 12/31/22
7	1		M1.3	Submit technology maturation plan to DOE	Tue 3/30/21	Tue 3/30/21
8	2.0			Preparation, characterization, and optimization of catalyst	Fri 1/1/21	Wed 6/30/21
9			M2.1	Ship > 20 g of catalyst with BET surface area > 100 m2/g shipped	Wed 6/30/21	Wed 6/30/21
10	3.0			Sequential membrane reactor testing and optimization	Fri 1/1/21	Wed 6/30/21
11			M3.1	Achieve CO2 conversion >20%, DMC selectivity >20%, DMC production rate >200 g_DMC/kg_cat/h at 140-220C and 25-35 bar	Wed 6/30/21	Wed 6/30/21
12	4.0			Coated catalyst development and catalytic performance evaluation	Thu 7/1/21	Fri 12/31/21
13	1	4.01		Coated catalyst development	Thu 7/1/21	Fri 12/31/21
14			M4.1	Complete development of coated CZZA-based catalyst with coating layer thickness <0.5 um and pore size between 0.4 and 0.6 nm	Fri 12/31/21	Fri 12/31/21
15	1	4.02		Catalytic performance evaluation of the coated catalyst	Thu 7/1/21	Thu 12/30/21
16			M4.2	Achieve CO2 conversion >15% and methanol yield >10% in methanol synthesis at 140-220C and 25-35 bar for the coated CZZA-based catalyst using a fixed bed reactor	Fri 12/31/21	Fri 12/31/21
17	5.0			Bifunctional membrane reactor testing and optimization	Sat 1/1/22	Fri 9/30/22
18			M5.1	Achieve CO2 conversion >40%, DMC selectivity >50%, DMC production rate >500 g_DMC/kg_cat/h at 140-220C and 25-35 bar	Fri 9/30/22	Fri 9/30/22
19	6.0			Optimization of bifunctional catalyst for membrane reactor testing	Sat 1/1/22	Fri 9/30/22
20]	6.01		Optimization of the coated catalyst	Sat 1/1/22	Fri 9/30/22
21		6.02		Catalytic performance evaluation of optimized coated catalyst	Sat 1/1/22	Fri 9/30/22
22			M6.1	Achieve CO2 conversion >20% and methanol yield >12% in methanol synthesis at 140-220C and 25-35 bar for the optimized coated CZZA-based catalyst using a fixed bed reactor	Fri 9/30/22	Fri 9/30/22
23	7.0			Membrane reactor parametric and deactivation tests	Fri 7/1/22	Sat 12/31/22
24			M7.1	Complete 100-500 hours continuous testing; achieve steady-state CO2 conversion >50%, DMC selectivity >60%, and DMC production rate >600 g_DMC/kg_cat/h	Sat 12/31/22	Sat 12/31/22
25	0.0	-		at 140-2200 and 25-55 bar Detailed technologonamic and life much analysis	Sat 10/1/22	Cat 12/21/22
26	8.0		140.4	Level Sign TCA expert with a Technology Contraction	Sat 10/1/22	Sat 12/51/22
27			M8.1	Issue Final LEA report with a Technology Gap Analysis	Sat 12/31/22	Sat 12/31/22
all F	1		110.2	ISSUE FINALLUA REDORT	Sat 12/51/22	Dat 12/51/22

gti

Disclaimer

This presentation was prepared by GTI as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.