A Novel Molten Salt System for CO₂ Based Oxidative Dehydrogenation with Integrated Carbon Capture

Fanxing Li research group North Carolina State University

> Partners: West Virginia University Susteon Inc.

NETL Project Manager: Naomi Oneil

Background and Project Overview

Project Funding: DOE - \$999,992; Cost share - \$254,637

Performance Period: 09/01/2020 – 08/31/2022

Project Participants: North Carolina State University, West Virginal University; Susteon Inc;

Project Objective: To develop a comprehensive proof-of-concept for the sustainable and costeffective production of propionic acid, and value added C3/C4 olefins, from CO_2 in power plant flue gas and domestic shale gas resources..

Proposed Strategy: This will be realized via a molten-salt mediated oxidative dehydrogenation (MM-ODH) process that performs reactive CO_2 capture (from power plant flue gas) and CO2 assisted alkane oxidative dehydrogenation in a two-step, thermochemical scheme

Specific Objectives

- (1) Phase I aims to unveil the optimization strategies for the redox catalysts to further improve their activity and CO_2 capture capacities at low temperatures (≤ 750 C) while maintaining their cyclic stability;
- (2) *Phase II* targets to optimize the redox catalysts and comprehensively validate their robustness and long-term performance. High-fidelity kinetic models will also be established for the optimized redox catalysts and used to guide the reactor and process design for scale up and commercialization.

NC STATE UNIVERSITY

Technology Background

NC STATE UNIVERSITY

Project Scope

Research Plan:

Phase I. Redox catalyst synthesis, screening and characterization; Preliminary TEA and LCA. **Phase II.** Long-term stability validation of redox catalysts; Refined TEA and LCA models.

Key Milestones/Successful Criteria and Timeline:

Q2 Feb.
2021Milestone 2.2 Catalyst Synthesis Screening: four redox catalysts giving at least
80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO2 conversion
with 85% CO2 capture)

Q4 Aug
2021Milestone 4.1 Initial TEA: Initial TEA using preliminary results, process model,
and literature review showing profitability at 20% ROI and 25% reduction in
energy consumption.

Q6 Feb. 2022 **Milestone 5.1 500 Cycle Test:** 500 cycle tests on two redox catalysts giving at least 85% selectivity and 55% yield for ethylene, 85% CO_2 conversion, and 90% CO_2 capture after cycling.

Q12 Jan.2022 **Milestone 8.1 Final TEA/LCA:** Developing a Final TEA/LCA using optimized experimental results, process model, and pricing of major complements showing profitability at 20% ROI and 25% reduction in energy consumption.

Project Progress: Experimental Set-up

In-line QMS

Gas Chromatography

*CO*₂-*Capture* (*Step 1*): CO₂ (in flue gas) + X₂O (dissolved alkali metal oxide in the molten salt) → X₂CO₃ MeO_{x-1} + 1/2O₂ (in flue gas) → MeO_x

 $CO_2-ODH (Step 2)$ R-CH₂-CH₃ + X₂CO₃ \rightarrow R-CH=CH₂ + CO + H₂O + X₂O (R can be H for ethane, CH₃, or CH₃-CH₂) R-CH₂-CH₃ + MeO_x \rightarrow R-CH=CH₂ + H₂O + MeO_{x-1}

Project Progress: Experimental Set-up at WVU

Experimental Set-up

kinetics measurement for diffusion (D) and surface exchange (k) coefficients for MeOx

 $MeO_{x-1} + 1/2O_2$ (in flue gas) $\rightarrow MeO_x$

Diffusion equation and solution:

$$\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2}$$
$$-D \partial C / \partial x \Big|_{x=\pm a} = k [C(\infty) - C(t)]$$
$$\frac{C(t) - C(0)}{C(\infty) - C(0)} = 1 - \sum_{n=1}^{\infty} \frac{2L^2 \exp(-\beta_n^2 Dt / a^2)}{\beta_n^2 (\beta_n^2 + L^2 + L)}$$
$$L = \frac{ak}{D} = \frac{a}{l_c} = \beta_n \tan \beta_n$$

Porous Oxide Synthesis

Objective: Develop a 3-dimensional ordered macro-porous (3DOM) perovskite $La_{0.8}Sr_{0.2}FeO_3$ (LSF) for oxidative dehydrogenation (ODH)

Figure. SEM image of the synthesized PMMA

OBSERVATIONS:

- 3DOM LSF was synthesized by using polymethyl methacrylate (PMMA) as a soft template
- Synthesized PMMA in Figure demonstrated the ordered PMMA microsphere array formed by PMMA microspheres with the uniform diameter (~300 nm).

Porous Oxide Synthesis

Figure. (a-d) SEM images of LSF prepared at different calcination temperature and e) XRD patterns of LSFO#9 prepared at 500 and 700 °C.

Some 3DOM structure was retained at 800 °C, but a large part of these structure was affected (Figure (d)).

₩estVırginiaUniversity.

University. Task 2 Redox Catalyst Synthesis and Characterizations

Porous Oxide Synthesis

XRD analysis of the synthesized catalysts

OBSERVATIONS:

- Carbonate and perovskite phases are compatible;
- Besides 3DOM, reactive grinding and nanocasting were performed at NCSU, leading to high porosity.

Reactive Performance

CO yields were unsatisfactory!

Milestone 2.2 *Catalyst Synthesis Screening*: four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO₂ conversion with 85% CO₂ capture)

Reactive Performance

Milestone 2.2 *Catalyst Synthesis Screening*: four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO_2 conversion with 85% CO_2 capture)

¹Biswas, R. K. et al. Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS. Journal of Non-Crystalline Solids 488, 1–9 (2018).

Reactive Performance

Milestone 2.2 *Catalyst Synthesis Screening*: four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO₂ conversion with 85% CO₂ capture)

Task 3 Redox Catalyst Optimization

Catalyst	Reaction Metric	Current Performance	DOE Milestone		
	Temperature	800°C	<u><</u> 750°C		
	Ethylene Yield	~65%	<u>></u> 50%		
1) Molten LNK-LSF slurry	Ethylene Selectivity	> 90%	<u>></u> 80%		
	CO ₂ Conversion	~90%	<u>></u> 75%		
	CO ₂ Capture	~80% (>85% with shortened duration)	<u>></u> 85%		
	Temperature	800°C	<u>≤</u> 750°C		
	Ethylene Yield	53.62%	<u>></u> 50%		
2) Molten LNK bath	Ethylene Selectivity	93.40%	<u>></u> 80%		
	CO ₂ Conversion	94.63%	<u>></u> 75%		
	CO ₂ Capture	~80% (>85% with shortened duration)	<u>></u> 85%		

Milestone 2.2 *Catalyst Synthesis Screening*: four redox catalysts giving at least 80% selectivity and 50% yield for ethylene at <750 °C, and 75% CO₂ conversion with 85% CO₂ capture)

Task 4 Techno-Economic and Lifecycle Analysis

Preliminary Process Models in AspenPlus™

Comparing ethane CO₂-ODH with MM-ODH

Working towards Milestone 4.1 *Initial TEA*: Initial TEA using preliminary results, process model, and literature review showing profitability at 20% ROI and 25% reduction in energy consumption.

Task 4 Techno-Economic and Lifecycle Analysis

Preliminary Process Models in AspenPlus™

Comparing ethane CO₂-ODH with MM-ODH

Working towards Milestone 4.1 *Initial TEA*: Initial TEA using preliminary results, process model, and literature review showing profitability at 20% ROI and 25% reduction in energy consumption.

Task 4 Techno-Economic and Lifecycle Analysis

Preliminary Process Models in AspenPlus™

Comparing ethane CO₂-ODH with MM-ODH

Working towards Milestone 4.1 *Initial TEA*: Initial TEA using preliminary results, process model, and literature review showing profitability at 20% ROI and 25% reduction in energy consumption.

Plans for Future Development

Future work within this project:

- Catalyst and reaction medium optimization;
- Long-term stability validation;
- Detailed reactor and system design for optimal performance;
- Scale-up and commercialization roadmap.

Future work beyond the project:

- Further scale up testing;
- Detailed reaction material cost and scalability study;
- Identification of commercialization partners;
- Demonstration and commercialization.

Summary Slide

- Perovskite oxides with high porosity were prepared via reactive grinding, nanocasting and 3DOM methods;
- Oxide molten salt compatibility were verified and reactive performance exceeded the targets in terms of ethane conversion/selectivity;
- Reactor material interaction with the salt caused delays, which was timely resolved;
- >4 reaction medium compositions were tested, with 80% average and >85% maximum CO2 capture, 90% CO₂ conversion, >90% ethylene selectivity, 65% ethylene yield. Meeting the proposed milestone;
- Preliminary TEA indicates potential for notable energy savings.

NC STATE UNIVERSITY

Appendix: Project Schedule and Milestones

Task Name	Team Member	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Task 1 Project Management and Planning	NCSU/Susteon								
Milestone 1.1: PMP modification	NCSU	٥							
Milestone 1.2: TMP	NCSU/Susteon	۵							
Task 2.0: Redox Catalyst Synthesis and Characterizations	NCSU								
Subtask 2.1 Redox Catalyst Synthesis	NCSU								
Subtask 2.2 Characterization of the Redox Catalysts N									
Milestone 2.2: Catalyst Synthesis Screening	NCSU		٥						
Task 3.0: Redox Catalyst Optimization	WVU/NCSU								
Subtask 3.1. Determination of Rate Limiting Step	WVU								
Subtask 3.2. Redox Catalyst Optimization	NCSU								
Milestone 3.2: Optimized Catalyst	NCSU				\diamond				
Task 4.0: Techno-Economic and Lifecycle Analysis	Susteon								
Subtask 4.1 Process Model Refinement and Analysis	Susteon								
Milestone 4.1: Initial TEA	Susteon				\diamond				
stask 4.2 Analysis of Alternative Commercial Products Susteon									
Task 5.0: Long Term Stability, Flue Gas Contaminants and Kinetic Studies	NCSU/WVU								
Subtask 5.1. Long -Term Testing of Redox Catalysts	NCSU								
Milestone 5.1: 500 Cycle Tests	NCSU						٥		
Subtask 5.2 Kinetic Parameter Analysis and Reactor Sizing/Design	WVU								
Task 6.0: Techno-Economic and Life Cycle Analyses Update	Susteon								
Task 7.0: TEA-Driven Redox Catalyst Optimizations	NCSU								
Subtask 7.1 Redox Catalyst Optimization Based on TEA Feedback	NCSU								
Milestone 7.1: Refined reactor design	NCSU							٥	
Subtask 7.2 Synthesis Optimization of the Redox Catalysts	NCSU								
Task 8.0: Development of Detailed Reactor and Process Design	Susteon								
Milestone 8.1: Final TEA/LCA	Susteon								\diamond
Milestone 8.2: Commercialization Road Map	Susteon								\diamond

Appendix: Organization Chart

NC STATE UNIVERSITY

Appendix: Risk Management

	Risk Rating			
Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy
	(Low, Med, High	1)		
Financial Risks:				
N/A	N/A	N/A	N/A	Project not dependent upon outside financing
Cost/Schedule Risks:				
Delayed/Extended negotiations	Med	Low	Low	Facilities are in place for rapid ramp up
Technical/Scope Risks:				
Insufficient MM-ODH catalyst performance	Low	High	Med	Develop a large library of redox catalyst materials and approaches; rationalized catalyst design based on molecular insights
Reactor Design for Molten Salts	Low	Med	Med	Catalyst particle design optimization (formulation and structure) can be incorporated to improve molten salt wetting and limit runoff
Management, Planning, and Oversigh	nt Risks:			
Delayed personnel ramp-up	Low	Low	Low	Sufficient personnel are in place and/or quickly filled (e.g. Ph.D. students) for the project.
ES&H Risks:				
N/A	N/A	N/A	N/A	Use of existing laboratory facilities and procedures
External Factor Risks:				
None/NA				

Acknowledgement

West Virginia University.

NCSU: Luke Neal, Kyle Vogt-Lowell, Dennis Chacko

Susteon:

Raghubir Gupta, Vasudev Haribal, Ryan Dudek

WVU:

John Hu, Sonit Balyan, Xingbo Liu, Wenyuan Li