Sustainable Conversion of Carbon Dioxide and Shale Gas to Green Acetic Acid via a Thermochemical Cyclic Redox Scheme

Fanxing Li research group North Carolina State University

Partners: Susteon Inc. Linde, plc (cost share partner)

NETL Project Manager: Naomi Oneil

Background and Project Overview

- **Project Funding:** DOE \$797,244; Cost share \$199,606
- *Performance Period:* 02/01/2019 01/31/2022
- Project Participants: North Carolina State University; Susteon Inc.; Linde (cost share partner);
- **Project Objective:** To develop a process for sustainable and cost-effective production of acetic acid from carbon dioxide, domestic shale gas, and waste heat.
- **Proposed Strategy:** To perform CO₂-splitting and methane partial oxidation (POx) in a synergistic two-step, thermochemical redox scheme via a hybrid redox process (HRP).

Specific Objectives

- Year 1: unveil the optimization strategies for the redox materials to further improve their activity at low temperatures (≤ 700 °C) while maintaining their redox stability;
- (2) Year 2: comprehensively investigate the robustness and long-term performance of the redox materials. Techno-economic and life-cycle analyses will be updated with new experimental results.
- (3) Year 3: Further optimization of the redox materials. Comprehensive reactor and process designs for scale-up and commercialization.

NC STATE UNIVERSITY

Technology Background

(1) FeO; (2) $SrFe_2O_{4^{\prime}}$ (3) $Sr_2Fe_2O_{5^{\prime}}$ (4) $Sr_3Fe_2O_6$

Technology Background

HRP can be a highly versatile and sustainable process for CO₂ utilization and chemical production.

Technology Background

	HRP	Dry Reforming	Coal Gasification
Unit operations for syngas preparation	HRP Reactors Methanol Reactor Acetic Acid Reactor	Reforming Cryogenic Separation WGS High Recycle Methanol Reactor Acetic Acid Reactor	Air Separation Coal Gasifier WGS Reactor CO ₂ removal Cryogenic CO recovery MeOH Reactor Acetic Acid Reactor
Energy needs (GJ/tonne) (Figure 3)	20.4*	29.7	38
CO ₂ consumed (tonne of CO ₂ /tonne of AcOH)	0.75	0.75	0
Feedstock including fuel (per tonne of AcOH)	35.4 MM BTU CH ₄	44.7 MM BTU CH ₄	4 tonnes of coal
Feedstock price	\$3/MM BTU	\$3/MM BTU	\$25/tonne of coal
Capital Recovery (\$/tonne of AcOH)	\$100 ^a	\$150 ^a	\$200 ^b
O&M (excluding feedstocks and energy) (\$/tonne of AcOH)	\$10 ^c	\$15 ^c	\$25 ^d
Price of CO ₂ (\$/tonne) ^e	\$40	\$40	N/A
Cost of Production (\$/tonne of AcOH)	\$246.20	\$329.10	\$325.00
Gross Margin	25%	25%	25%
Required Selling Price	\$307.80	\$411.36	\$406.75

Challenges at the project onset: (a) High operating temperature; (b) Long-term redox stability; (c) System design and scale up; (d) Techno-economics.

NC STATE UNIVERSITY

Technical Approach and Project Scope

Research Plan:

Year I. Redox catalyst synthesis, screening and characterization; Preliminary TEA and LCA.

Year II. Stability validation of redox catalysts; Refined TEA and LCA models.

Year III. Redox catalyst demonstration and reactor design; Process scale-up and high fidelity techno-economics.

Key Milestones/Successful Criteria and Timeline:

Q3Title: Milestone 2.2: Redox material down selectionSelect at least 4 redox catalyst with >20% CO_2/PO_x Oct.2019kinetics improvements and/or >40% per cycle CO yield increase vs the CaO-SrFeO3 reference material.

Q4 Title: Milestone 3.2 *Redox performance & stability (decision point)*: Show CO₂ and methane conversions *Jan.2019* of >85% at temperatures \leq 700 °C after 50 cycles.

Q8Title: Milestone 5.2 Large lab-scale performance verification (decision point): Show methane and CO_2 Jan.2021conversions of >85% at temperatures \leq 700 °C after 500 cycles in a .75" I.D. packed bed.

Q10 Title: Milestone 7.1 *Optimized reactor Sizing:* Report modified reactor sizing based upon TEA optimized catalyst.

Q12 Jan.2022 Title: Milestone 7.2 Scalable up material validation: Report CO₂ and methane conversions of >85% at process optimized temperature and cycle timing for redox material over 500 Cycles for a one pot synthesize catalyst.

Project Progress: Experimental Set-up

Lab-Scale U-Tube Reactor

Large packed bed reactor

Bench/small pilot setup

Task 2. Redox Materials Synthesis and Characterizations

Haribal, et al. Advanced Energy Materials. 1901963:1-10.

Task 2. Redox Materials Synthesis and Characterizations

PGM Free Mixed Conductive Composites as the Redox Catalyst $Ce_{0.85}Gd_{0.1}Cu_{0.05}O_{2-\delta}$ (CGCO)+LaNi_{0.35}Fe_{0.65}O₃(LNF)

LaNi_xFe_{1-x}O₃ with Different Ni Loading (x \leq 0.5)

Redox Catalyst: LaFe_{1-x}Ni_xO₃

- Partial substitution of Ni into LaFeO₃ substantially improved the redox performance in both methane and CO₂ conversion steps.
- CH₄ conversion was merely 15% for LaFe_{0.05}Ni_{0.95}O₃. Increase in the Ni content improved the redox performance by up to 6 folds.

LaNi_xFe_{1-x}O₃ with Different Ni Loading ($x \le 0.5$)

Redox Catalyst: LaFe_{1-x}Ni_xO₃ and CGCO / LaFe_{1-x}Ni_xO₃

- Redox performances of standalone LNFs are only slightly inferior to those of the composite CGCO/LNFs.
- Considering the simplicity and potential cost savings, standalone LaNi_{0.5}Fe_{0.5}O₃ can be a very promising candidate.

LaNi_xFe_{1-x}O₃ with Different Ni Loading ($x \ge 0.5$)

DFT Guided Redox Materials Optimization

Tailoring Oxide Thermodynamic Properties via High Throughput Screening

ML Fitting Results

ML based model, verified by DFT, covered 227,273 high entropy perovskites with ease

NC STATE

DFT Guided Redox Materials Optimization

Task 5. Redox Material Long Term Stability

Long Term performance of standalone LaNi_{0.5}Fe_{0.5}O₃

- Near 85% methane conversion, 95% CO selectivity, and ~90% CO₂ conversion were achieved throughout the last 200 cycles with periodic reactivation.
- Sequential air reactivation have a minimal negative impact on the overall syngas and CO yields.
- Both methane and CO₂ conversions, were above 85% over the entire 900 cycles, meeting <u>Milestone 5.2</u>.

Task 3. Further Development of Redox Materials (performance/stability)

TPO and XRD of deactivated and reactivated LNF redox catalyst at various stages

Summary on Redox Materials Development

Four generations of highly effective redox catalysts were developed:

- Gen 1. Platinum group metal (PGM) promoted doped ceria oxide showed high activity for low temperature methane POx and CO₂-splitting;
- **Gen 2.** PGM free CGCO+LNF composite redox catalysts also showed excellent performance;
- **Gen 3.** PGM and rare earth free LNF composite redox catalysts, with optimized Ni:Fe ratios, demonstrated satisfactory performance;
- Gen 3B. PGM and rare earth free LNF redox catalysts offers the potential to produce separate streams of concentrated H₂ and CO, with the opportunity to increase CO₂ utilization;
- **Gen 4.** DFT guided selection of mixed-oxides with high activity and high lattice oxygen storage capacity.

Task 6. Update on Techno-Economic Analysis

TEA process & approach

Susteon

Susteon

BFD and Energy Flows Baseline Case

BFD and Energy Flows HRP Case

Figures in GJ/tonne AcOH

Key Factor Comparison Baseline Case vs. HRP

Parameter	Baseline (SMR, ATR)	HRP
Net Energy Input GJ/tonne AcOH	15.5	10.6 32% energy savings
Syngas Generation Systems	Two systems: 1) For methanol 2) For CO	Single system produces methanol-ready syngas and CO
Methane (energy) feed GJ/tonne AcOH	56.1	25.1 55% reduction
Auxiliary output streams	Large H ₂ and steam flows	Less steam
Thermal Efficiency	Optimized over decades	Conservative unoptimized estimate for FOAK

Reactor Design Concept

Techno-Economics

Susteon

With respect to Baseline Case

- 52% reduction in capital costs is expected
- Leading to 43% reduction in cost per tonne of acetic acid

Future Work

 Perform detailed sensitivity analysis of operating and capital cost expense and finalize TEA report

Plans for Future Development

Future work within the project:

- TEA driven redox catalyst optimization and stability testing;
- Detailed reactor and system design for optimal performance;
- Scale-up and commercialization roadmap.

Future work beyond the project:

- Further scale up testing (up to 1000 cuft/day);
- Detailed redox catalyst cost and scalability study;
- Demonstration and commercialization with industrial partner(s).

Summary Slide

- Hybrid Redox Process can generate high quality syngas and a separate stream of CO via CO₂ splitting;
- Four generations of high-performance redox catalysts have been developed;
- Computationally guided material development led to promising results;
- >90% methane conversion, 95% CO₂ conversion and 90% CO selectivity;
- Long-term stability for 900 cumulative cycles have been demonstrated;
- Both fluidized bed and packed bed system designs have been developed;
- TEA findings are highly encouraging.

Appendix:

Research Products:

Peer-reviewed publications:

Sherafghan Iftikhar, Qiongqiong Jiang, Yunfei Gao, Junchen Liu, Haiming Gu, Luke Neal, and Fanxing Li^{*} "LaNi_xFe_{1-x}O_{3- δ} as a Robust Redox Catalyst for CO₂-Splitting and Methane Partial Oxidation".(2021) *Energy and Fuels* (Accepted)

Qiongqiong Jiang, Yunfei Gao, Vasudev Haribal, He Qi, Xingbo Liu, Hui Hong, Hongguang Jin, Fanxing Li*.

"Mixed Conductive Composites for 'Low-Temperature' Thermo-chemical CO2 Splitting and Syngas Generation".

(2020) Journal of Materials Chemistry A. DOI: 10.1039/D0TA03232H.

Vasudev Haribal, Xijun Wang, Ryan Dudek, Courtney Paolus, Brian Turk, Raghubir Gupta, and Fanxing Li*. (2019) "Modified Ceria for "Low-Temperature" CO₂ Utilization: A Chemical Looping Route to Exploit Industrial Waste Heat". *Advanced Energy Materials*. 1901963:1-10.

Conference Presentation:

Qiongqiong Jiang, "Composite Mixed Ionic-electronic Conducting Materials for Low-Temperature Thermochemical CO₂ Splitting and Syngas Generation" Advanced Fossil Energy Utilization R&D, 2019 AIChE annual meeting (*Received CRE Division Student Travel Award*)

Project Schedule and Milestones

				2019			2020				2021				
Task Name	Start	End	Resource	Q1	Q2	Q3	Q4	Q5	Q6 (27 (Q8	Q9 (210 C	211	Q12
Task 1 Project Managmant and Planding	2/1/2019	1/31/2022	NCSU/Susteon												
Milestone 1.1: PMP modification		2/28/2019	NCSU	♦											
Milestone 1.2: Project kickoff meeting		3/31/2019	NCSU/Susteon	٥											
Task 2.0: Redox material synthesis and characterizations	2/1/2019	6/30/2021	NCSU												
Subtask 2.1 Redox Material Synthesis	2/1/2019	6/30/2021	NCSU												
Subtask 2.2 Characterization of the Redox Materials	2/1/2019	11/31/2019	NCSU												
Milestone 2.1: Initial Redox material Screening		7/31/2019	NCSU		٥										
Milestone 2.2: Redox material down selection		10/15/2019	NCSU			٥									
Task 3.0: Redox Material Development	4/1/2019	6/30/2021	NCSU												
Subtask 3.1. Further characterization of the activity	4/1/2019	6/30/2021	NCSU												
Subtask 3.2. Optimization Strategy Development	7/1/2019	12/31/2020	NCSU												
Title: Milestone 3.1 Redox kinetics characterized		10/15/2019				0									
Title: Milestone 3.2 Redox performance & stability		12/31/2019					٥								
Task 4.0: Techno-economic and Lifecycle Analysis	2/1/2019	12/31/2019	Susteon												
Subtask 4.1 Process model refinement and analysis	2/1/2019	12/31/2019	Susteon												
Subtask 4.2 Analysis of Alternatives Commercial Products	7/1/2019	12/31/2019	Susteon												
Milestone 4.1. Initial LCA TEA Report		12/31/2019	Susteon				٥								
Milestone 4.2 Product slate screening		10/15/2019	Susteon			٥									
Task 5.0: Redox Material: Long Term Stability	2/1/2020	6/30/2021	NCSU												
Subtask 5.1. Long term testing of the redox materials	2/1/2020	6/1/2021	NCSU												
Subtask 5.2 Empirical kinetic parameters analysis	2/1/2020	6/1/2021	NCSU												
Milestone 5.1 Reactor sizing		6/30/2020	NCSU						\diamond						
Milestone 5.2. Large lab-scale performance verification		12/31/2020	NCSU								\diamond				
Task 6.0: Techno-Economic and Life Cycle Analyses Update	2/1/2020	6/30/2021	Susteon												
Milestone 6.1 Reactor size/sensitivity		9/30/2020	Susteon							\diamond					
Milestone 6.2 TEA/LCA Update		12/31/2020	Susteon								\diamond				
Task 7.0: Redox Material : Economics Driven Optimizations	2/1/2021	12/31/2021	NCSU												
Subtask 7.1 Techno-economic Redox Catalyst Optimization	2/1/2021	12/31/2021	NCSU												
Subtask 7.2 Synthesis optimization for scale-up	2/1/2021	12/31/2021	NCSU												
Milestone 7.1 Optimized reactor Sizing		6/30/2021											\diamond		
Milestone 7.2 Scalable up material validation		12/31/2021													٥
Task 8.0: Development of detailed reactor and process	2/1/2021	12/31/2021	Susteon												
Milestone 8.1 commercialization road map		12/31/2021	Susteon												٥
Milestone 8.2 Final TEA and LCA report		4/30/2022	Susteon												->

28

Task 1. Project Management and Planning

The project has been effectively managed.

Risk Management

Perceived Risk Probability Impact Overall Mitigation/Response Strat	egy						
(Low, Med, High)							
Financial Risks:							
Third party funding or cost- Low Med Low The project is not depen	dent						
share upon third party funding (Cost-						
share is provided by NCSU	and						
Susteon.							
Cost/Schedule Risks:							
Delayed funding causing Med Low Low Use of existing equipment	and						
project delays personnel will allow quick	amp						
up of project upon finalizati	on						
Technical/Scope Risks:	1.						
Low redox material Low High Med Extensive preliminary re-	ults,						
performance and identified altern	ative						
systems, and PI expertise	WIII						
and mitigation	115K						
Poor techno-economic or LCA Low Med Low TEA and LCA will be value	lated						
results early and alternative	final						
products screened to ide	ntifv						
potentially better economics	and						
or CO ₂ utilization.							
Management Risks:							
Communications between Low Low Organizations are in the	same						
organizations geographical area and will	have						
bi-weekly conference calls	and						
in-person meetings							
Planning and Oversight Risks:							
Personnel hiring Low Low Existing personnel is suffi	cient						
to complete early tasks							
ES&H Risks:							
Use of Toxic and Flammable Low Med Low PI laboratories have signif	icant						
gasses infrastructure in place for	the						
handling of hazardous gasse	s.						
EXTERNAL FACTOR KISKS:							
IN/A LOW LOW LOW Project is not dependent	upon						
unificial party or ext considerations to proceed	ernar						

Acknowledgement

NCSU:

Sherafghan Iftikhar, Yunfei Gao, Luke Neal, Qiongqiong Jiang

Susteon:

Raghubir Gupta, Vasudev Haribal, Andrew Tong, Cory Sanderson

Susteon Linde:

NETL:

Minish Shah

Naomi Oneil

