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Structure-controlled product selectivity

“Atomically Precise” nanocatalysts

Electrochemical Catalyst Design

ACS Catalysis, 2019, 9, 5375 

Surface-science enabled electrocatalysis
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3D Structured SnO2 Catalysts
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• Electrochemically reduce CO2 to formate/formic acid  (HCOO- / HCOOH).

• Formic acid has agricultural and industrial uses. 
• Currently produced via natural gas reforming and methanol processing.
• Extremely carbon intensive. 

• Formic acid is also an emerging energy carrier (53 g H2 / L)

• Key Challenges: 
• Current density
• Stability / durability
• Scalable catalyst synthetic procedure. 



Catalyst Synthesis Approach

SnO2 (110)

SnO2 (101)

SnO2 (101)

SnO2 (110)
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• PMMA template produces sphere diameter at ~200 nm. 

• Control the size and crystallinity of constituent SnO2 nanoparticle 
by air calcination temperature (300-600oC.)

• Simple solution-phase synthesis and thermal processing
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High 
Temp

US patent application submitted and manuscript in preparation 



Characterization Results

• XRD, XPS and Raman showed higher 
calcination temperatures produced larger, 
more crystalline SnO2 NPs. 
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• XRD, XPS and Raman showed higher 
calcination temperatures produced larger, 
more crystalline SnO2 NPs. 

• XRD, XPS, EXAFS and Raman all confirmed 
SnO2 oxidation state. 

• Performance differences stem from the size 
and crystallinity of constituent nanocrystals. 
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Electrochemical Details

• SnO2 catalysts mixed w/ ~10 wt% carbon 
black powder to increase conductivity & 
Nafion binder. 

• Deposited onto PTFE-coated carbon paper 
electrodes at 5.4 mgSnO2/cmgeo

2.

• Electrochemical H-Cell screening conducted 
in CO2 saturated 0.1M KHCO3

Cathode 

Chamber

Anode 

Chamber
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Catalyst Activity vs Calcination Temperature
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Balance between crystallinity 
and particle size

• <500 oC the SnO2 formed 
smaller, less crystalline NPs.
• Lower formate partial 

current density. 
• Increased HER (~20% FE).

• >500 oC produced larger SnO2

particles with lower activity.
• Reduced active surface 

area
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Product Selectivity
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• 500 C calcination temperature 
produced highest activity and 
formate FE.

• CO and H2 were the only other 
products detected.

500 oC calcined SnO2 Nanosphere
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In situ Raman Spectroscopy
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DT @ -1.2V

Rapid reduction of SnO2 to 
metallic Sn during CO2RR.
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Benchmarking Catalyst Performance
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• Benchmarked against commercially 
available SnO2 catalyst particles 
(Sigma Aldrich; ~28 nm diameter NPs)

• Benchmarked against identically 
synthesized non-templated SnO2

nanoparticles (~8 nm diameter)

• Substantially higher formate partial 
current density at all potentials. 



Estimating Active Site Density
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Sn ← Sn4+ • SnO2 has characteristic redox peaks. 

• SnO2 reduced to metallic Sn during cathodic-going 
sweep. 
• Confirmed with in situ Raman
• Overall 4 electron process. 

• We can use the cathodic reduction peak to 
estimate active site density.
• Integrated peak area (Coulombs; C)
• C / (F*ne-) = mol Sn sites

• NETL SnO2 nanospheres have ~2-4 times higher 
active site density and ~2-3 times higher 
electrochemical surface area. 



Long-Term Performance at -1.2V vs. RHE
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• NETL SnO2 Nanospheres 
demonstrated ≥2x performance 
increase over SnO2 NPs.

• Average 68±8% formate FE 
during 36 hour electrolysis
• Multiple start/stop cycles
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Post-Reaction Morphology
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NETL SnO2 Nanospheres resist large-scale particle agglomeration
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Time Dependent synchrotron X-Ray Diffraction shows:
• Rapid formation of ~25 nm metallic Sn nanoparticles 

with b-Sn crystallographic orientation. 
• No further particle growth after initial reduction. 
• Metallic Sn consistent with in situ Raman spectroscopy. 
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Electrolyzer Performance

• Collaboration with NREL
• 25 cm2 electrode; 0.5 mg/cm2 catalyst loading
• 0.4 M K2SO4 catholyte (40 mL/min)
• 1M NaOH anolyte (50 mL/min)
• Ni mesh anode

Anode

BPM

NREL Electrolyzer Design: ACS Energy Lett. 2020, 5, 1825−1833
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NETL SnO2 Nanosphere Conclusions
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1. NETL SnO2 Nanospheres out-perform SnO2 NPs and commercially available SnO2. 
• Unique shape with extremely high surface area
• Optimized synthetic process to maximize formate current density
• High formate FE and selectivity
• Stable under steady state H-Cell operation

2. Raman and synchrotron-XRD show SnO2 was quickly reduced to metallic Sn

3. Collaboration with NREL to evaluate NETL SnO2 Nanospheres in electrolyzer 
• Sustained 24 hour performance at industrially relevant current densities (~500 mA/cm2). 
• Ongoing efforts to minimize component level losses (BPM degradation, overpotentials, etc.)
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Moving Forward: Doped SnO2 for Improved Performance
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• Doping Strategies to improve 
performance. 

• Scalable synthetic strategy. 

• Preliminary H-Cell data shows 
excellent activity and good stability. 

• Initiating in-house electrolyzer 
testing. 

*Patent application and manuscript in preparation. 
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Alternative CO2 Utilization Technology: Microwave Catalysis

Patent application and Appl. Catal. B, 2021, 284, 119711

• Microwave-assisted Dry Reforming of Methane: CO2 + CH4 → 2CO + 2H2

• Electrically-driven process;  microwaves selectively and rapidly heat catalyst bed to ~900C.
• Ultra-efficient production of CO and H2;  >80% single pass conversion. 
• Kilogram-scale catalyst production.
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Questions or Comments? 
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Douglas.Kauffman@NETL.DOE.GOV

Thank you for your attention!


