Georgia Tech

CREATING THE NEXT

Design of Transition-Metal/Zeolite Catalysts for Direct Conversion of Coal-derived CO₂ to Aromatics

DOE Award #: DE-FE0031719

Georgia Tech Research Corporation Georgia Institute of Technology

Prof. Christopher W. Jones (Presenter)Prof. Andrew J. MedfordProf. Matthew J. Realff

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Federal funds

Non-Federal Cost Share

Budget Period 1 - 1/1/19 - 6/30/2020

Baseline: \$400,000 Actual Incurred Costs: \$338,972 Variance: \$61,028

Baseline: \$117,560 Actual Incurred Costs: \$154,418 Variance: \$-36,858 (Excess cost-share)

Budget Period 1+2 - 1/1/19 - 12/31/2021

Baseline: \$800,000 Current Incurred Costs: \$596,160 (6/30/2021) Variance: TBD Baseline: \$235,119 Actual Incurred Costs: \$154,418 (6/30/2021) Variance: \$76,958

CREATING THE NEXT

Direct conversion of CO₂ to BTX

*2-step route 1st order analysis: *Fischer-Tropsch (Olefins) has performance advantages* Research Focus (Experimental+Theoretical): MeOH/ZSM-5 together

Technical Approach (Exp/Comp)

- (i) Synthesis and testing of composite catalytic materials that include known methanol and hydrocarbon synthesis catalysts mixed with a known aromatization catalyst (ZSM5);
- (ii) Varying material and reaction properties such as catalyst domain size or reactant composition to investigate effects on **measured rates and selectivities**;
- (iii) Developing a **microkinetic computational model** on baseline systems and extending to various alloys and reactant compositions;
- (iv) Refining computational mechanism(s) based on experimental data and including product interactions and subsequent reactions into the model for more realistic surface coverage effects;
- (v) Synthesis of alloys based on computational models to improve selectivities to BTX species.

Milestones Achievements

M #	Year	(Sub) Task #	Milestone Description	Planned Completion	Actual Completion	Verification Method
1	1	1.0	Project Management Plan	1/31/2019	1/31/2019	Project Management Plan File
2	1	4.2	Synthesis, characterization, reactor testing of physical mixtures	12/31/2019	10/15/2019	Y1, Q4 report
3	2	4.3	Experimental evaluation of impact of CO_2/H_2 ratio	11/30/2020	11/30/2020	Y2, Q4 report
4	1	5.3	Calculate rates under varied conditions	12/31/2019	03/09/2020	Y1, Q4 report
5	3	6.2	Experimental evaluation of impact of crystallite size	2/28/2021	2/28/2021	Y3, Q1 report
6	2	7.1	DFT Calculations of other TMs	09/30/2020	09/01/2020	Y2, Q3 report
7	3	7.3	Screening model under various conditions	03/31/2021	04/30/2021	Y3, Q2 report
8	3	10.2	Experimental evaluation of impact intimate mixing of acid and metal domains	09/30/2021		Y3, Q3 report
9	3	11.3	Predict performance under observed conditions	12/31/2021		Y3, Q4 report

Strategy

Realff's Group Techno-economic Process Intensification Optimization LCA

	D'-								
Perceived Risk	Risk Rating Probability Impact Overall (Low, Med, High)			Mitigation/Response Strategy					
Financial Risks:									
COVID-19 shutdown extends beyond July 1 st	Med	High M	Лed	Experimental tasks (that need on-site presence) will be re-scheduled/prioritized to obtain critical required					
2020, or similar shutdown situation happens again				data in a timely manner.					
				Laboratory shutdown is unlikely based on GT experience in summer 2020 with safe research operation.					
				If shutdown were to occur, we would likely request a No-Cost-Extension.					
Technical/Scope Risks:									
CatMAP screening fails	Low	Med M		CatMAP screening has been used for numerous reactions, but not CO_2 to aromatics. Initial failure will require more detail be incorporated into screening, which could delay the project progression. This will be mitigated by using models that have proven successful for syngas hydrogenation to alcohols as a starting point, and by employing uncertainty quantification to improve robustness.					
Screening of only [211] surfaces does not produce insight	Low	Med L	:	Additional metal surfaces, likely [111], need to be considered. This is unlikely since previous screening models of similar reactions have been successful with [211] model surfaces. This risk can easily be mitigated by adding approximately 3 months to the timeline to complete DFT calculations on the [111] surfaces.					
Coupling of reaction/transport between zeolite and catalyst cannot be approximated with proposed screening approach	Med	Med N		Spatial gradients in reactant/product concentration may play an important role in selectivity patterns. This will make it difficult to directly predict selectivity from existing models. This risk will be mitigated by the use of probabilistic screening that is more robust to errors, and if necessary, a PFR reactor model can be implemented in CatMAP to better account for transport issues.					
Predicted alloy unable to be synthesized experimentally as small, bimetallic nanoparticles	<mark>Med</mark>	Med N		Some metals are not stable as bimetallic nanoparticles or are not accessible via traditional synthesis routes. Alternative, more advance routes can be taken or alternative alloys can be attempted.					
				Close communication between experiment and theory researchers critical. Begin synthesizing new alloys as soon as preliminary data suggest a possible "hit" from computational screening. Err on side of having too many samples vs too few.					

Task 4. Experimental Testing of Baseline Systems (Accomplished)

- ZnZrOx: Higher alcohol selectivity at comparable conditions with ZnGa₂O₄ vs. CuZnAl catalysts
- Lower contact times, higher conversion of CO_2 ; Max aromatics selectivity at Si/AI = 300
- Optimum H_2/CO_2 ratio = 3/1
 - Higher H₂/CO₂ ratios: higher CO₂ conversion and lower aromatics selectivity amongst HCs
 - Lower H₂/CO₂ ratios: higher CO selectivity

Tasks 5. Microkinetic Model Development (Accomplished)

Baseline model

Grabow's MKM CO/CO₂ hydrogenation to methanol + WGS reaction

- Cu(111) surface
- 49 elementary reactions
- 30 chemical species
- DFT ground-state energies
- Vibrational frequencies and Shomate correlation parameters.
- Analyzed temperature range < 540K

Reaction Coordinate

Grabow, L. C. & Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO_2 and CO Hydrogenation. ACS Catal. **2011**, 1, 365–384.

Tasks 5. Microkinetic Model Development (Accomplished) Extended MKM

Added missing routes

C-O cleavage (hydrocarbons)

- Hydrocarbons associated routes (methane, ethane)
- Higher alcohols route (ethanol, acetaldehyde)

Grabow, L. C. & Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO_2 and CO Hydrogenation. *ACS Catal.* **2011**, 1, 365–384.

15

lec

CREATING THE NEXT

Georgia

Additional Steps

Task 6. Experimental testing of different zeolite crystallite structure sizes (Accomplished)

- Smaller ZSM5 crystal sizes: shorter diffusion path length for intermediate compounds: better aromatization performance
- Very small ZSM5 crystal sizes: larger ZnZrO_x particles: smaller interfacial surface area between active sites: lower rate of aromatization

Tasks 7. DFT on Different Transition Metals (Accomplished)

2 **Potential Energy Diagram** Ag(211) 1 **Baseline Model** Au(211) Potential Energy (eV) Grabow's Cu(111) 0 Cu(111) Cu(111) Grabow's Refined MeOH + RWGS $^{-1}$ Cu(111) Cu(211) -2 **Extended Model** Pd(211) DFT: Ground-state Energies -3 **Transition State: BEP Scaling** Rh(211) Pt(211) -4relations 3H* 2H* 2H* 6H* 3H* * + + CH₃OH* + OH* + H* CH₃OH* + H₂O* CO_{2(g)} + 3H_{2(g)} 6H* 5H* сН₃ОН* + Н-ОН* 3H* ЗӉ 5H 4H 4H CH₃O₂*+ (H-CH₂O*+ OH* + CH₃O* + OH* + CH₂O*+ OH* + H-HCOOH + CH2O-OH* + CH₃O-H* + OH* CO_{2(g)} -HCOO* HCOOH* HCOO-H* H-COO* CO_2^*

MeOH synthesis from CO₂ hydrogenation

CH₃OH_(g) + H₂O_(g)

17

Tasks 7. Screening Model (Accomplished)

Binding Energies Screening Model

Provides trends in catalytic activity as a function of metallic catalyst binding energies.

Extended Model Four-fold active sites Cu(211) C-O dissociation pathways

Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

as in Syngas to higher alcohols

Benchmark against literature results.

TOF: turn-over frequency

Task 8. Experimental testing of chemical mixtures (Accomplished)

- **Goal**: Minimizing the reaction-diffusion length scales (minimizing the chances of intermediates side-reactions)
- NH₃ TPD and XRD results indicate similar types of active sites for the wetness impregnated (WI) and physically mixed (PM) catalysts, while quantified EDS and NH₃ TPD results suggest higher density of metal oxide active sites in the WI catalyst
- The WI and PM catalysts show similar behavior at different temperatures: Similar reaction pathways for both catalysts
- Higher CO selectivity for the WI catalyst could be due to a more effective coverage of aromatization active sites by metal oxides in the WI catalyst

$H_3 TPD$

CREATING THE NEXT

Task 10. Experimental testing of new alloy compositions (Ongoing)

Subtask 10.1 – Establish synthesis procedures

- NiGa/SiO₂ catalyst synthetized via incipient wetness impregnation.
- Temperature programmed reduction in H₂ evidenced formation of alloys with different stoichiometry
- Incipient wetness impregnation is suitable for Ni-Ga alloy synthesis

700 °C for 2 h in 10% H₂/N₂

Tasks 11. Macroscale Model (Ongoing)

CO₂ to Methanol LHHW-model [1]

 $(Cu/ZnO/Al_2O_3)$ Devised by [2] with eq. constants from [4], further refined by [3].

Goal: Regression / Inverse Problem adjust the 5 T-dependent rate parameters based on our experimental data and assume the chemical equilibriumparameters and prefactors remain the same.

Experimental Data

 $ZnZrO_x$: Conversion and Selectivity as a function of WHSV and Temperature

B

Figure 1. Experimental studies over the ZnZrO_{xl} catalyst. (A) temperature, and (B) WHSV study.

Georgia Tech

Van-Dal, É. S. & Bouallou, C. Design and simulation of a methanol production plant from CO2 hydrogenation. J. Clean. Prod. 57, 38–45 (2013).
Vanden Bussche, K. M. & Froment, G. F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J. Catal. 161, 1–10 (1996).
Mignard, D. & Pritchard, C. On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels. Chem. Eng. Res. Des. 86, 473–487 (2008).
Graaf, G. H., Sijtsema, P. J. J. M., Stamhuis, E. J. & Joosten, G. E. H. Chemical equilibria in methanol synthesis. Chem. Eng. Sci. 41, 2883–2890 (1986).

Future Plans

Current Project

Assess the performance of bimetallic catalysts for CO_2 -MeOH-BTX in conjunction with ZSM-5. Develop/adjust the MeOH to BTX macroscale model based on ZnZrO_x:ZSM-5 experimental results Finalize LCA and carbon footprint studies (AspenPlus) based on the final macroscale model

Future Projects and Scale-up Potential

Preliminary Results: Hydrogen input (as electricity from electrolysis) contributes largely to the OPEX Pure CO_2 feed is preferred to reduce N_2 purge losses.

rWGS reaction still prevails (faster) in most CO_2 and CO to MeOH catalytic routes. FT routes fare better. Equilibrating the rWGS reaction would lead to higher yield to species in (CO/CO₂-MeOH-BTX); However, it requires CO recycle and, thus, selective downstream separation trains

Thank you!

Organizational Chart

Design of Transition-Metal/Zeolite Catalysts for Direct Conversion of Coal-derived CO₂ to Aromatics

Tec

Gantt Chart

Task	Team	Description		roject	t Year	1	Р	roject	t Year	2	Project Year 3				м	s	Start Date	End Date
Task	Member			Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	IVI	2	Start Date	End Date
1	CWJ;	Project Management Plan													M1			
_	AJM																1/1/2019	12/30/2021
2	CWJ; AJM;	Technology Maturation Plan	∕_															
2	MJR																2/1/2019	6/30/2019
3	CM1	Retrofitting Reactor															4/1/2019	8/30/2019
4.1		Synthesis, characterization, reactor testing of separate metal catalysts and ZSM5	Î				1										2/1/2019	8/30/2020
4.2	CWJ	Synthesis, characterization, reactor testing of physical mixtures					I								M2		4/1/2019	9/30/2020
4.3		Experimental evaluation of impact of CO2/H2 ratio								Î					M3	S1	5/1/2020	11/30/2020
5.1		Develop microkinetic model	\leftarrow														2/1/2019	5/15/2019
5.2	AJM	Calculate DFT-based rates	\leftarrow														2/1/2019	10/15/2019
5.3		Calculate rates under varied conditions													M4	S2	8/1/2019	12/31/2019
6.1	ſWϽ	ZSM5: Establish synthesis procedures		-													5/15/2019	10/15/2019
6.2	CWJ	Experimental evaluation of impact of crystallite size								ł					M5		11/1/2020	2/28/2021
7.1		DFT calculations of other TMs							\rightarrow						M6		10/15/2019	9/30/2020
7.2	AJM	CatMAP screening model							1	$ \rightarrow$							4/1/2020	12/30/2020
7.3		Screening model under various conditions													M7		5/1/2020	3/30/2021
8.1	CWJ	Chemical Mixtures: Establish synthesis procedures							-	\Rightarrow							8/1/2020	12/30/2020
8.2	CWJ	Experimental evaluation of intimate mixing of acid and metal domains								-		\Rightarrow					12/1/2020	4/30/2021
9.1	AJM	Compute descriptors on binary alloys									\rightarrow						4/1/2020	3/30/2021
9.2		Predict alloy catalysts								Į							10/1/2020	6/30/2021
10.1	CWJ	New Alloy Composition: Establish synthesis procedures									ŧ						3/1/2021	6/30/2021
10.2	CWJ	Experimental evaluation of impact intimate mixing of acid and metal domains									•		\rightarrow		M8		3/1/2021	9/30/2021
11.1		Macroscale model development									Ì						1/1/2021	3/30/2021
11.2	AJM	Model combination/Integration with CatMAP											\rightarrow				1/1/2021	9/30/2021
11.3		Extend CatMAP to varid conversion prediction												$ \clubsuit$		S3	10/1/2021	12/30/2021
12	CM1	Experimental optimization of conditions for best alloy															7/1/2021	12/30/2021
13.1	CWJ;	Calculate carbon footprint of this process based on the collected data												\rightarrow			7/1/2021	12/30/2021
13.2	AJM	Determine if using raw flue gas (15% CO2) or concentrated CO2 improves techno-economics												\rightarrow			7/1/2021	12/30/2021

	Ris	k Ratin	a						
Perceived Risk	Probability Impact Overal (Low, Med, High)		Overall	Mitigation/Response Strategy					
Financial Risks:		-	-						
Existing equipment failure, replacement funds not in budget	Low	Med	Low	Much of the existing reactor will be retrofitted with new parts. Old GC will remain. GC failure after proper maintenance and only 10 yr use unlikely. Lab has >5 other GCs that might be used in its place.					
Cost/Schedule Risks:	_								
Delayed hiring of personnel	Med	High	Med	PIs will seek applicants for project before notification of award. PIs will seek applicants already at Georgia Tech.					
Delayed delivery of required analysis component(s) (gas tanks, materials)	Low	Med	Low	Spare parts will be available on-hand in most cases.					
COVID-19 shutdown extends beyond July 1 st 2020, or similar shutdown situation happens again	Med	High	Med	Experimental tasks (that need on-site presence) will be re-scheduled/prioritized to obtain critical required data in a timely manner.					
Technical/Scope Risks:									
CatMAP screening fails	Low	Med	Med	CatMAP screening has been used for numerous reactions, but not CO_2 to aromatics. Initial failure will require more detail be incorporated into screening, which could delay the project progression. This will be mitigated by using models that have proven successful for syngas hydrogenation to alcohols as a starting point, and by employing uncertainty quantification to improve robustness.					
Screening of only [211] surfaces does not produce insight	Low	Med	Low	Additional metal surfaces, likely [111], need to be considered. This is unlikely since previous screening models of similar reactions have been successful with [211] model surfaces. This risk can easily be mitigated by adding approximately 3 months to the timeline to complete DFT calculations on the [111] surfaces.					
Suggested metal oxides do not provide satisfying results for aromatics production	Med	Med	Med	An up-to-date literature review will be conducted to identify and test alternative options.					
Coupling of reaction/transport between zeolite and catalyst cannot be approximated with proposed screening approach	Med	Med	Med	Spatial gradients in reactant/product concentration may play an important role in selectivity patterns. This will make it difficult to directly predict selectivity from existing models. This risk will be mitigated by the use of probabilistic screening that is more robust to errors, and if necessary, a PFR reactor model can be implemented in CatMAP to better account for transport issues.					
Zeolite MFI does not produce BTX	Low	Low	Low	MFI is the most commercially applied zeolite. It is highly effective at aromatization. If fails, other zeolites can be used from vendors, or synthesized by Jones.					
Predicted alloy unable to be synthesized experimentally as small, bimetallic nanoparticles	Med	Med	Med	Some metals are not stable as bimetallic nanoparticles or are not accessible via traditional synthesis routes. Alternative, more advance routes can be taken or alternative alloys can be attempted.					
Management Risks:									
Team collaboration and communication is poor	Low	Med	Low	Jones, Medford, Realff work together in the same building at Georgia Tech. Jones/Realff and have worked together before.					
Planning and Oversight Risks:									
None perceived.									
ES&H Risks:									
Accident associated with experimental testing	Low	High	Low	Laboratory designed for high pressure catalytic reactions. Gas cabinets, CO monitors, and computer-controlled reactor already in place. Jones is Chair of Georgia Tech Institute Council on Environmental Health & Safety					
External Factor Risks:									
None perceived.									

	Ris	sk Ratin	a						
Perceived Risk		ility Impact Overal		Mitigation/Response Strategy					
	(Low, Med, High)								
Financial Risks:			ř.						
Existing equipment failure, replacement funds not in	Low	Med	Low	Much of the existing reactor will be retrofitted with new parts. Old GC will remain. GC failure after proper maintenance and					
budget				only 10 yr use unlikely. Lab has >5 other GCs that might be used in its place.					
Cost/Schedule Risks:									
Delayed hiring of personnel	Med	High	Med	PIs will seek applicants for project before notification of award. PIs will seek applicants already at Georgia Tech.					
Delayed delivery of required analysis component(s)	Low	Med	Low	Spare parts will be available on-hand in most cases.					
(gas tanks, materials)									
COVID-19 shutdown extends beyond July 1 st 2020, or	Med	<mark>High</mark>	<mark>Med</mark>	Experimental tasks (that need on-site presence) will be re-scheduled/prioritized to obtain critical required data in a timely					
similar shutdown situation happens again				manner.					
Technical/Scope Risks:									
CatMAP screening fails	Low	Med	Med	CatMAP screening has been used for numerous reactions, but not CO ₂ to aromatics. Initial failure will require more detail be					
				incorporated into screening, which could delay the project progression. This will be mitigated by using models that have					
				proven successful for syngas hydrogenation to alcohols as a starting point, and by employing uncertainty quantification to					
				improve robustness.					
Screening of only [211] surfaces does not produce	Low	Med	Low	Additional metal surfaces, likely [111], need to be considered. This is unlikely since previous screening models of similar					
insight				reactions have been successful with [211] model surfaces. This risk can easily be mitigated by adding approximately 3					
Currented evides de pet previde estistuing		Mad		months to the timeline to complete DFT calculations on the [111] surfaces.					
Suggested metal oxides do not provide satisfying	Med	Med	Med	An up-to-date literature review will be conducted to identify and test alternative options.					
results for aromatics production Coupling of reaction/transport between zeolite and	Med	Med	Med	Spatial gradients in reactant/product concentration may play an important role in selectivity patterns. This will make it difficult					
catalyst cannot be approximated with proposed	Nieu	Meu		to directly predict selectivity from existing models. This risk will be mitigated by the use of probabilistic screening that is more					
screening approach				robust to errors, and if necessary, a PFR reactor model can be implemented in CatMAP to better account for transport issues.					
Zeolite MFI does not produce BTX	Low	Low	Low	MFI is the most commercially applied zeolite. It is highly effective at aromatization. If fails, other zeolites can be used from					
	LOW	Low	LOW	vendors, or synthesized by Jones.					
Predicted alloy unable to be synthesized	Med	Med	Med	Some metals are not stable as bimetallic nanoparticles or are not accessible via traditional synthesis routes. Alternative, more					
experimentally as small, bimetallic nanoparticles	IVIC C	Inc.	Inca	advance routes can be taken or alternative alloys can be attempted.					
Management Risks:									
Team collaboration and communication is poor	Low	Med	Low	Jones, Medford, Realff work together in the same building at Georgia Tech. Jones/Realff and have worked together before.					
Planning and Oversight Risks:									
None perceived.									
ES&H Risks:									
Accident associated with experimental testing	Low	High	Low	Laboratory designed for high pressure catalytic reactions. Gas cabinets, CO monitors, and computer-controlled reactor					
				already in place. Jones is Chair of Georgia Tech Institute Council on Environmental Health & Safety					
External Factor Risks:									
None perceived.									

Perceived Risk	Probability	k Rating Impact Ov Med, High)		Mitigation/Response Strategy		
inancial Risks:						
OVID-19 shutdown extends beyond July 1 st 2020,	<mark>Med</mark>	<mark>High</mark> Me	ed 🛛	Experimental tasks (that need on-site presence) will be re-scheduled/prioritized to obtain critical required data in		
r similar shutdown situation happens again				<mark>a timely manner.</mark>		
				Laboratory shutdown is unlikely based on GT experience in summer 2020 with safe research operation. If		
				shutdown were to occur, we would likely request a No-Cost-Extension.		
echnical/Scope Risks:						
atMAP screening fails	Low	Med Me		CatMAP screening has been used for numerous reactions, but not CO_2 to aromatics. Initial failure will require more detail be incorporated into screening, which could delay the project progression. This will be mitigated by using models that have proven successful for syngas hydrogenation to alcohols as a starting point, and by employing uncertainty quantification to improve robustness.		
creening of only [211] surfaces does not produce nsight	Low	Med Lov		Additional metal surfaces, likely [111], need to be considered. This is unlikely since previous screening models of similar reactions have been successful with [211] model surfaces. This risk can easily be mitigated by adding approximately 3 months to the timeline to complete DFT calculations on the [111] surfaces.		
oupling of reaction/transport between zeolite and atalyst cannot be approximated with proposed creening approach	Med	Med Me	ed	Spatial gradients in reactant/product concentration may play an important role in selectivity patterns. This will make it difficult to directly predict selectivity from existing models. This risk will be mitigated by the use of probabilistic screening that is more robust to errors, and if necessary, a PFR reactor model can be implemented in CatMAP to better account for transport issues.		
redicted alloy unable to be synthesized	Med	Med Me	ed 🛛	Some metals are not stable as bimetallic nanoparticles or are not accessible via traditional synthesis routes.		
xperimentally as small, bimetallic nanoparticles				Alternative, more advance routes can be taken or alternative alloys can be attempted.		
				Close communication between experiment and theory researchers critical. Begin synthesizing new alloys as soon		
				as preliminary data suggest a possible "hit" from computational screening. Err on side of having too many		
				samples vs too few.		
lanagement Risks:						

30

Success Criteria

S #	(Sub)Task #	Decision Point	Date	Success Criteria
1	4.3	Experimental evaluation of impact of CO ₂ /H ₂ ratio	11/30/2020	Table of steady-state conversion and selectivity for physical mixtures with the minimum aromatics selectivity of 20% in total carbon or 50% in hydrocarbon products for at least one condition at different CO_2/H_2 ratios
2	5.3	Calculate rates under varied conditions	12/31/2019	Agreement between calculations of rate/selectivity from microkinetic model and experimental results for baseline system
3	11.3	Predict performance under observed conditions	12/31/2021	Agreement between calculation of rate/selectivity between microkinetic model and experimental results under optimal operating conditions for best catalyst

Planned Work

Ongoing Tasks:

Task 10.0 – Experimental testing of new alloy compositions

<u>Subtask 10.1 – Establish synthesis procedures:</u> The Recipient will carry out the synthesis and routine characterization of computationally predicted alloy nanoparticles on Al_2O_3 . These catalysts will be physically mixed with ZSM5 crystals of size determined from Task 6.0 to have the optimal diffusion-reaction length scales. **June 2021**

<u>Subtask 10.2 – Experimental evaluation of alloys:</u> Steady-state conversion testing, measuring rates and selectivities, will be completed. **Sep. 2021**

Task 11.0 – Refine mechanism based on presence of aromatics

Subtask 11.1 – Macroscale model development: The Recipient will develop macro-scale kinetic model of conversion of methanol (COMPLETED) /alkanes to aromatics (LATE) based on experimental results. Mar. 2021

Planned Work

Future Tasks:

Task 11.0 – Refine mechanism based on presence of aromatics

Subtask 11.2 – Model combination/integration: The Recipient will integrate the macro-scale kinetic model with the micro-kinetic model in CatMAP. Sep. 2021

Subtask 11.3 – Extended CatMAP to varied conversion prediction: The Recipient will use the CatMAP model to evaluate activity/selectivity as a function of conversion to aromatics. **Dec. 2021**

Task 12.0 – Experimental optimization of conditions for best alloy

Steady-state conversion testing, measuring rates and selectivities as a function of CO_2/H_2 ratio, will be experimentally completed. **Dec. 2021**

Planned Work

Future Tasks:

Task 13.0 – Technology assessment of intensified reactor

<u>Subtask 13.1 – Carbon footprint</u>: The Recipient will calculate carbon footprint of this process based on the collected data. This will be a key component of a life cycle assessment (LCA) focused on the reactions proposed and the reactor. The recipient will consider the use of water by the process, and the derived measures of LCA from energy use such as contributions to eutrophication and acid rain using standard LCA tools. The boundary of the process will be the reactor system necessary to convert CO2 from coal into aromatic products and will not include separation, distribution and ultimate fate of those aromatics within a chemical complex. **Dec. 2021**

Subtask 13.2 – Assess need for CO_2 purification: The Recipient will determine if using raw flue gas (15% CO_2) is feasible for aromatics production, or whether use of concentrated CO_2 improves overall techno-economics. Dec. 2021

Thank you!

