“Novel Algae Technology to Utilize CO$_2$ for Value Added Products”
DE-FE0031710

PI: Frederick Harrington, PhD
Helios-NRG, LLC

August 30, 2021
Project Overview

• Project Partners:
 • University at Buffalo
 • Linde, Inc
 • Northwestern University
 • Membrane Technology & Research
 • National Carbon Capture Center

• DOE Federal Project Manager: Naomi O’Neil

• Project Funding:
 • Total: $1,734,486
 • Government: $1,387,588 Cost Share: $346,898

• Project Period: 5/1/19 – 7/31/22
Overall Project Objectives

• Design, build and operate a first-of-a-kind integrated MSC system
• Achieve high performance in outdoors operation
• Conduct NCCC field test on real flue gas
• Develop algae technology for 2 high value products
• Improve dewatering technology
• Perform LCA and TEA
• Achieve projected net CO2 capture cost at commercial scale of <$30/ton
Commercial Schematic of Technology

Coal Power Plant

Post FGD flue gas

Sunlight

~1% CO2

Algae MSC Process for CO2 capture

Dewatering

Algae Slurry

HTL + Upgrading

Bio-fuels

Residue

Waste water

nutrients

Make-up water
& nutrients

Water + Nutrient
Recycle

Water

Algae for nutraceuticals

Dewatering

Commercial Extraction

Nutraceuticals

Algae for Animal feed

Dewatering

Feed Blending

Feed Products
Technical Approach/Project Scope

<table>
<thead>
<tr>
<th>Project Area</th>
<th>Detail</th>
<th>Completed</th>
<th>To Be Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture Technology</td>
<td>Gas Type: Sim Flue gas; Actual Flue gas</td>
<td>Sim Flue gas</td>
<td>Real flue gas at NCCC</td>
</tr>
<tr>
<td></td>
<td>Algae strain</td>
<td>H-1903 Selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capture System: Algae MSC</td>
<td>Designed, Built & tested in GH</td>
<td>Test Outdoors & at NCCC</td>
</tr>
<tr>
<td></td>
<td>Target 25 g/m2/d and 80% capture</td>
<td>Met in GH</td>
<td>Validate outdoors</td>
</tr>
<tr>
<td>Dewatering</td>
<td>Stage 1: Adv Gravity Table</td>
<td>50% reduction in energy on 2 species</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target perf exceeded</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of recycle water in growing validated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage 2: Dewatering membrane</td>
<td>Surface modified membrane developed</td>
<td>Complete regen process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab module built & tested</td>
<td>Build & test larger module</td>
</tr>
<tr>
<td>Products</td>
<td>Algae type</td>
<td>Strains H-0326 & H-1601 selected</td>
<td>Enhance culturing</td>
</tr>
<tr>
<td></td>
<td>Components</td>
<td>Multiple components identified</td>
<td>Increase product levels</td>
</tr>
<tr>
<td></td>
<td>Separation</td>
<td>New extraction process conceived</td>
<td>Improve recovery</td>
</tr>
</tbody>
</table>
Technology Background - MSC

- Multi-stage continuous process
- Top lit closed system
- Stable algae concentrations
- High productivity & capture efficiency
- Predictable, controllable operation
- Can be tailored to application
 - e.g. Natural gas power plants

Integrated MSC test unit in greenhouse
MSC Evolution

- Needs to operate in variable sunlight
 - Initial lab development in constant light
 - Next moved to GH - sunlight
 - Highest light intensity is outdoors (future)

- Algae must survive and grow in flue gas with high CO2, acid gases and heavy metals

- PBR design varied over time used to improve productivity and capture efficiency

Evolution in MSC Development

<table>
<thead>
<tr>
<th>Tank Type</th>
<th>Light Facility</th>
<th>Intensity Avg (Lux)</th>
<th>Feed Gas</th>
<th>Post FGD Cont</th>
<th># of Stages</th>
<th>Overall Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Lab</td>
<td>~9,000</td>
<td>CO2</td>
<td>N/A</td>
<td>3</td>
<td>14.1 54%</td>
</tr>
<tr>
<td>R</td>
<td>Lab</td>
<td>~9,000</td>
<td>CO2</td>
<td>N/A</td>
<td>3</td>
<td>19.9 80%</td>
</tr>
<tr>
<td>H</td>
<td>GH</td>
<td>~11,000</td>
<td>CO2</td>
<td>SOX/NOX + HM</td>
<td>3</td>
<td>21.2 73%</td>
</tr>
<tr>
<td>C</td>
<td>GH</td>
<td>~14,500</td>
<td>CO2</td>
<td>SOX/NOX + HM</td>
<td>2</td>
<td>30.8 74%</td>
</tr>
</tbody>
</table>
Project Progress - MSC

- Integrated 3-stage MSC fabricated with improved closed raceway design
- Advanced control system enables unattended operation
- Stable GH operation 60+ days
- Various process options mapped
- Performance validated in sunlight
- Transitioning from GH to outdoors
- Components enclosed for outdoors
- Readying system for transport to NCCC

Integrated Raceway-MSC at Greenhouse

Species: H-1903; Tank Design: G; Gas: 12% CO2 (simulated flue)
Dewatering and Products

- Dewatering is a key, enabling technology
- Must be low energy
- As water is removed, rheology changes
- Extent of dewatering dictated by needs of downstream product

- Products represent CO2 utilization
- Several products possible with a range of market sizes/prices
 - Biofuels
 - Animal feed
 - Nutraceuticals

Diagram showing the process of dewatering from Algae Culture to Algae Solid with stages 1, 2, and 3, and water recovery rates.
Significant progress in Stage 1 through culture modification:
- Now removes >90% water vs ~70% in prior projects
- Goal of 4X improvement in Perf Index greatly exceeded
- Validated water re-use from dewatering step
Dewatering Membrane Rationale and Approach

• Membrane is energy-efficient
• But fouling is a critical challenge

Advantages:
 o Surface modification reduces fouling
 o Simple process at 23 °C, aqueous solutions
 o Covalent bonds to achieve long-term stability
 o Post-modification of commercial modules
Project Progress - Dewatering membrane

- Surface modification decreases water permeance
- But improves the performance of algae dewatering

<table>
<thead>
<tr>
<th>Cleaning solution</th>
<th>Solution permeance (LMH/bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>Pure Water</td>
<td>1268</td>
</tr>
<tr>
<td>HCl pH~3</td>
<td>1282</td>
</tr>
<tr>
<td>NaOH pH~11</td>
<td>1203</td>
</tr>
<tr>
<td>0.04% NaClO</td>
<td>1417</td>
</tr>
</tbody>
</table>
Project Progress - Nutraceuticals

Algae Strain: H-0326
- Requires induction
- Products similar to those found in prior work

Algae Strain: H-1601
- Requires no induction
- **Product A** - Food & pharma applications
- **Product B** - High value lipids
- **Product C** - Potential for food coloring & pharma applications
Project Progress – Nutraceuticals
2 phase product extraction

- Enables recovery of added products

- Step 1: extract soluble material in fraction S

- Step 2: Insoluble fraction P used for second extraction
Plans for future development

MSC CO₂ Capture:

- Implement dynamic process control
- Develop in-ground system that will be the building block for commercial application
- Integrate MSC with dewatering and operate with high recycle rate
- Utilize municipal WW for purchased nutrient reduction & significant remediation credits

Utilization:

- **Biofuels:** Optimize HTL process for higher efficiency & reduced costs
- **Animal Feed:** Develop feed applications
- **Nutraceuticals:** Utilize commercial extraction, advance purification & define products
Summary

• First of a kind integrated MSC system designed, built and tested
 – Stable long term operation achieved
 – Capture efficiency and productivity targets met in GH/outdoors operations

• Good progress in de-watering technology
 – Stage 1 targets exceeded
 – Dewatering membrane lab module fabricated

• Nutraceutical production from new strains looks promising
 – Multiple compounds identified
 – Advanced extraction process conceived

• System being readied for NCCC field test
Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE-0031710.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Gantt Chart

DOE Award Number DE-SC0031710

<table>
<thead>
<tr>
<th>Task #</th>
<th>Task Title</th>
<th>Start</th>
<th>End Date</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Project</td>
<td>5/1/2019</td>
<td>7/31/2022</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Project Management and Planning</td>
<td>5/1/2019</td>
<td>7/31/2022</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Design, build, operate MSC system</td>
<td>8/1/2019</td>
<td>4/30/2022</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Optimize Nutraceuticals production</td>
<td>2/1/2020</td>
<td>4/30/2022</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Advance DeAqua Gravity Table Performance</td>
<td>8/1/2019</td>
<td>7/31/2021</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Advance DeAqua Anti-fouling Membrane</td>
<td>8/1/2019</td>
<td>7/31/2021</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DeAqua Module Performance Tests</td>
<td>5/1/2021</td>
<td>7/31/2022</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Field Test of Carbon Capture</td>
<td>11/1/2021</td>
<td>4/30/2022</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Life Cycle Assessment</td>
<td>8/1/2021</td>
<td>7/31/2022</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Perform Techno-economics Analysis</td>
<td>5/1/2021</td>
<td>7/31/2022</td>
<td></td>
</tr>
</tbody>
</table>

Organization: Helios-NRG, LLC