Electrochemical Production of Highly Valuable Carbon Nanotubes from Flue-Gas Sourced CO₂ DE-FE-0091319

Dr. Anna Douglas, Ph.D. SkyNano LLC

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

- Project Funding
 - Total: \$2,587,339
 - Federal: \$2,000,000
 - \$1,750,000 contract to SkyNano
 - \$250,000 contract to NREL
 - Cost Share: \$587,339
- Project Performance: 10/1/2020-09/30/2023
- Project Participants
 - SkyNano
 - NREL
 - TVA

Project Overview

- Overall Project Objectives
 - Demonstration of core technology at scale of 0.2 kg_{CNT}/hr
 - Net reduction in CO₂ → CO₂ sourced from a flue gas provided by utility
 - CNTs exhibiting market-ready materials properties at costs 80-90% lower than industrial standard
 - median diameter < 30nm
 - ID/IG <1
 - purity > 95%

Electrolytic CO₂ Reduction Chemistry

Carbon Products Previously Observed

CNTs: High CO₂ Value

Species	#e-	Pathway	US Market Price (\$/kg)a	\$/e- req. (x103)b	Global Production (MMT/y)	CO2ec (MMT CO2/y)							
Carbon Monoxide	2	EC, TC	0.18	2.6	150	236							
Formic Acid	2	EC, TC	0.66d	15.2	0.6	0.60							
Carbon Nanotubes	4	EC	110.2	331.0	0.003e	0.01							
Methanol	6	EC, TC	0.35	1.9	91.8f	126							
Methaneg	8	EC, TC, BC	0.15	0.3	2336	6410							
Acetic Acid	8	EC, BC	0.61	4.6	14.3	21							
Ethylene Glycol	10	EC	0.93	5.8	28.3h	40							
Acetaldehyde	10	EC	1.42	6.3	0.9e	1.8							
Dimethyl Ether	12	TC	0.65i	2.5	3.7	7.1							
Ethanol	12	EC, TC, BC	0.52	2.0	89.6	171							
Ethylene	12	EC, TC, BC	0.71	1.7	156	490							
Acetone	16	EC	1.00	3.4	6.8j	15							
Propionaldehyde	16	EC	1.6k	5.8	0.61	1.4							
Propylene	18	TC	1.07	2.5	117	367							
1-Propanol	18	EC	1.43	4.8	0.2	0.4							
Isopropanol	18	BC	1.07	3.6	1.9f	4.2							

SkyNano targeting carbon black additivebased markets, representing a 8.1 MMT/y market

EC = Electrochemical, TC = Thermochemical, BC= Bioelectrochemical; a: 2014-2018 average price in United States unless otherwise noted; b: Normalized price calculated based on mole of electrons required per mole of product; c: United States EPA 2017 emissions data.¹⁶ 324 total operating coal fired power plants in U.S. producing a total of 3.30 GT/y of CO₂ yielding average of 1.02 MMT/y carbon per plant; d: Average of 2014 and 2016 price; e: 2015 global consumption; f: Average 2017-2018 global consumption; g: Assumes natural gas price and market size; h: Average 2016-2017 global consumption; i: Average Chinese spot price in 2014-2018 converted to USD; j: 2016 global consumption; k: Average Western European price in 2008; l: 2017 global consumption.

Process Diagram

Challenges Remaining

- Technical questions remaining as we scale up:
- What concentration of CO₂ is required for high quality CNTs?
- Can we increase current density to enable high throughput CO₂ conversion while maintaining CNT quality?
- What are the effects of various impurities that may be present in flue gas or other concentrated CO₂ source?
- Engineering challenges remaining as we scale up:
- highly efficient thermal management
- materials/device choices for high temperature electrochemistry
- optimized reactor design including CO₂ inputs, outputs, carbon collection, electrolyte flow system, etc.

Technical Approach of Project

- Task 2 + 3 focused on closed e-cell demonstrating CNT growth from CO₂ gas inputs
 - pure CO₂
 - synthetic flue gas
 - TVA-provided flue gas
- Task 4 focused on scaling e-cell to 0.05 kg_{CNT}/hr + system of 4 cells
- Task 5 focused on integrating all systems required for fully continuous operation

Project Schedule/Milestones

- Updated PMP 10/31/2020
- Updated TMP 12/31/2020
- Design + assembly of e-cell 1/31/2021
- Demonstrate CNT growth from e-cell 3/31/2021
- Demonstrate CNT growth from CO₂ gas inputs 9/31/2021
- Complete design + build of pilot cell prototype 0.05 kg/hr 12/31/2021
- Demonstrate functionality + CNT growth from single cell 0.05 kg_{CNT}/hr 3/31/2022
- Demonstrate optimized thermal management 6/30/2022
- Validate functionality of 4-cell system total of 0.2 kg_{CNT}/hr 9/30/2022
- Functionality of all auxiliary systems needed for a fully integrated process with 10+ hrs continuous operation 9/30/2023

Success Criteria

• BP1

- demonstrate CNT growth from CO₂ gas inputs + optimized flow rates
- CNT median diameter < 30nm (SEM)
- ID/IG < 1 (Raman)
- Coulombic efficiency > 80% (moles e- in / moles C out)
- CO₂ efficiency > 80% (moles C out / moles CO2 in)
- BP2
 - functionality of 4 cell system using CO₂ gas inputs
 - CNT growth @ 0.2 kgCNT/hr w/ same quality criteria as above
 - based on Aspen model, demonstrate minimum selling price (2020\$) << market value (\$109/kg)
- BP3
 - functionality of auxiliary systems including electrolyte flow, carbon collection, and carbon processing
 - fully optimized system demonstrating CNT growth @ 0.2kgCNT/hr
 - demonstration of 10+ hr continuous operation
 - demonstrate net negative carbon balance from LCA study

Risk Management

- Cost/Schedule
 - cost of labor and/or pilot cell higher than anticipated mitigation strategy includes early design and/or increase SkyNano contribution
- Technical
 - risk of CNT quality observed at small scale not achievable at larger scales – mitigation strategy includes TEA/LCA on carbon products produced
 - flue gas impurities negatively influencing electrochemistry mitigation strategy includes closely monitoring effects at small scale to design around any influences in BP2 and BP3
- Management/Planning
 - staying on schedule mitigation strategy includes weekly progress meetings
- External
 - access to key resources/lab space at UT in light of ongoing COVID-19 pandemic – mitigation strategy includes at-home work strategy and advocate for us within the UT system

First experiments in GFC: no gas flowing; ambient pressure Plain stainless steel cathode vs. Al₂O₃coated Ni shim anode Operating conditions: 100mA/cm², 60min

Success Criteria Achieved

- 82.9% Coulombic efficiency at 93 mA/cm² for a 1 hour run; 0.864 g CNT produced
- SEM images shown here
- I_D/I_G = 0.89 from Raman spectroscopy shown below

00 nm FIB Lo Mag =

FIB Lock Mags = No Tilt Angle = 0.0 ° Mag = \$5.53 K X WD = 5.9 mm FIB Imaging = SEM Stage at T = 0.0 ° EHT = 5.00 kV Signal A = InLens [FIB Probe = 30KV:50 pA

Date :4 Mar 2021 Time :8:23:56

SEM of MWCNTs produced with pure CO_2 flowing through headspace of GFC cell at 300 sccm

No characterization on if these CNTs were produced from the CO_2 flowing through headspace – uptake needs to be measured to fully characterize this phenomena

CO₂ Stoichiometry as a Function of Current Density at Constant Flow Rate (100-cm² Active Area)

- Observations related to CO₂ and N₂ sparging pre-electrochemistry may indicate some effect of dissolved elemental CO₂ in Li₂CO₃
 - undesirable CO formation at cathode?
 - mitigation strategy may include oxide-rich carbonate electrode
- Active sparging vs. pre-sparging gasses
 - active sparging of CO₂ and N₂ at high current density is
- Outlet measurement and characterization system
 - Quantek instruments CO_2/O_2 analyzer + MFC

GFC helping fundamental understanding of driving electrochemistry DESIRED REACTIONS

Yin et al., Energy & Environmental Science, 6, 1538 (2013).

M.D. Ingram and G.J. Janz, *Electrochimica Acta*, **10**, 783 (1965). H.V. Ijije et al., *Faraday Discussions*, **172**, 105 (2014).

Summary Slide

- Designed and built an electrochemical cell capable of accommodating flowing gasses through the electrolyte and headspace
- Results so far have demonstrated the ability to produce MWCNTs from Li2CO3 in the GFCdesigned reactor that will be utilized for flowing pure CO2, synthetic flue gas, and real flue samples from TVA
- Designed and built system to analyze gas outputs from off the headspace of GFC to characterize CO2 uptake

Appendix

Organizational Chart

Gantt Chart

		Budget Period 1 October 1, 2020 - September 30, 2021												Budget Period 2 October 1, 2021 - September 30, 2022												Budget Period 3 October 1, 2022 - September 30, 2023												
			Q1	Q1 Q2					Q3	Q3 Q4					Q1		Q	Q2			Q3 Q4					Q1			Q2			Q3			Q4			
Task	Assigned Resources	0	N	D	J	F	М	Α	М	J	J	А	S	0	Ν	D.	JF	- N	A A	A N	1 J	l l	A	A ::	s	0	Ν	D	J	F	Μ	Α	м	J	J	А	S	0
1.0 - Project Management and Planning																																						
Subtask 1.1 - Project Management Plan																																						
Milestone A - Submit updated PMP		0																																				
Subtask 1.2 - Technology Maturation Plan																																						
Milestone B - Submit initial TMP				0																																		
Task 2.0 - Design, assemble, and test gas-flow electrochemical cell																																						
Subtask 2.1 - Design and assemble gas-flow electrochemical cell																																						
Milestone C - Complete design and assembly of E-chem cell					0																																	
Subtask 2.2 - Test with "open" system conditions																																						
																																						_
Milestone D - Demonstrate CNT growth from E-chem cell; CNTs exhibiting qualities of median diameter < 30 nm characterized by SEM analysis, Raman ID/IG < 1, and measured Coulombic efficiency > 80%							0																															
Task 3.0 - Study various gas inputs and flow rates																	_	_	_	_		_	_	_	_													
Subtask 3.1 - Pure CO2 gas input				\square															+		+	+															\rightarrow	
Subtask 3.2 - Synthetic coal-fired flue gas and synthetic natural gas- fired flue gas																																						
Subtask 3.3 - Utility-provided sample flue gas input																																						
Milestone E - Demonstrate CNT growth from gaseous inputs and optimized flow rates; CNTs exhibiting qualities of median diameter < 30 nm characterized by SEM analysis, Raman ID/IG <1, and measured Coulombic efficiency > 80%; efficiency of CO2 conversion > 80%													\$																									
Task 4.0 - Design, build, and test pilot-scale cell																																						
Subtask 4.1 - Design and assembly of pilot cell prototype																																						
Milestone F - Complete design and build of pilot cell prototype with carbon production capacity of 0.05 kg/hr																0																						
Milestone G - Validate functionality of singular pilot cell using CO2-rich gas inputs: demonstrate CNT growth producing 0.05 kgCNTs/hr with median diameters < 30 nm characterized by SEM, Raman ID/IG <1, and measured Coulombic efficiency > 80%																			0																			
Subtask 4.2 - Test and measure energy efficiency of thermal management system																																						
Milestone H - Demonstrate optimized thermal management with known heat loss during heating, use, and cooling phases																						0																
Subtask 4.3 - Test CNT growth with synthetic and utility-provided flue gas																																						
Milestone I - Validate functionality of system of 4 cells using CO2-rich gas inputs: demonstrate CNT growth producing 0.2 kgCNTs/hr with median diameters < 30 nm characterized by SEM, Raman ID/IG <1, and measured Coulombic efficiency > 80%; efficiency of CO2 conversion > 80%																									\$													
Task 5.0 - Design and build auxiliary systems																																						
Subtask 5.1 - Electrolyte flow and filtration system																																						
Subtask 5.2 - Carbon collection and purification system																																						
Subtask 5.3 - Cathode cleaning and preparation system																																						
Milestone J - Demonstrate functionality of all auxiliary systems working together as a complete system capable of producing 0.2 kgCNTs/hr that exhibit properties of median diameter < 30 nm characterized by SEM, purity of at least 95% CNTs in final product, Raman ID/IG <1, and measured coulombic efficiency > 80%; efficiency of CO2 conversion > 80%; > 10 hour continuous operation																																					0	
Task 6.0 - Techno-Economic Analysis with Technology Gap Analysis and Life Cycle Analysis Milestone M - Submit draft Final Report																																						_
winescone wi-submit draft Final Report																													1									0