Field-Scale Testing of the Thermocatalytic Ethylene Production Process Using Ethane and Actual Coal-Fired Flue Gas CO₂ DE-FE0031713

Joel Cassidy, Chanse Appling, & Jadid Samad

U.S. Department of Energy

August 31st, 2021

Project Overview: Funding Profile

	Total						
	(02-01-2019 to 11-30-2021)						
	DOE funds	Cost Share					
Southern Research	\$1,319,410	\$350,500					
ARTC	\$35,200	\$0					
NCCC	\$45,000	\$0					
8 Rivers LLC	\$99,832	\$24,958					
Total (\$)	\$1,499,442 \$375,458						
Total Cost Share %		20%					

Project Overview: Timeline

Task Name	Start	End	Resource
Task 1: Project management and reporting	Fri, 02/01/19	Sun, 02/28/22	SR
Task 2: Field scale preparation and testing	Fri, 02/01/19	Sun, 06/30/19	SR
Task 2.1: Catalyst scale up	Fri, 02/01/19	Sun, 03/31/19	SR
Task 2.2: Catalyst testing in a lab scale reactor	Mon, 04/01/19	Sun, 06/30/19	SR
Task 3 : Technology maturation plan	Mon, 07/01/19	Wed, 07/31/19	SR
Task 4: Procurement and integration of actual flue gas with skid	Thu, 08/01/19	Fri, 01/31/20	SR/NCCC
Task 4.1 Field scale skid preparation and transportation to the host site	Thu, 08/01/19	Mon, 09/30/19	SR
Task 4.2 Integration with the host site and commissioning of the skid	Tue, 10/01/19 Mon, 12/07/20	Fri, 01/31/20 Fri, 04/30/21	SR/NCCC
Task 4.3 Development of a baseline ASPEN simulation model	Mon, 09/30/19	Fri, 01/31/20	SR
Task 5: Continuous operation using actual flue gas	<mark>Sat, 02/01/20</mark> Mon, 05/03/21	Mon, 11/30/20 Tue, 11/30/21	SR/NCCC
Task 6. Techno-economic and life cycle/ technology gap analysis	Wed, 12/01/21	Mon, 02/28/22	SR

3

SR

Project Overview: Objectives of the Field Scale Study

- Scale up (~100x) synthesis of nano-engineered catalysts
- Validate performance of scaled up catalysts using laboratory scale reactor
- Integrate field scale skid with host site's post-combustion facility for direct actual flue gas derived CO₂ access. (Task 4.2)
- Process simulation with post reaction separation and capital cost estimation.
- Test the catalysts for stability under optimized process condition for an extended period of time. (Task 5)
- Techno-economic and life cycle assessment for potential commercialization of the process.

Technology Background

Thermo-catalytic ethylene production using ethane and CO₂ (CO₂-ODH)

Oxidative dehydrogenation (ODH): $C_2H_6 + CO_2 \rightarrow C_2H_4 + CO + H_2O$

Advantages over commercial steam cracking (SOA)

- At least 150°C lower operating temperature
- Catalytic process that utilizes CO₂ and eliminates use of H₂O and external reductants (e.g., H₂) or strong oxidant (e.g., O₂)
- Process adaptable to different CO₂ streams with impurities
- Reduced process footprint due to high reaction selectivity
- Co-production of CO-rich syngas
- With co-product utilization, production cost can be lowered to SOA cost
- ✓ 50% or more overall GHG emission reduction via direct CO₂ conversion

Innovation

Catalyst addresses key commercialization issues

SR

Laboratory Scale Results

Long Term Stability (FG-case)

Cycle = 5-7hr continuous run followed by 1hr air regeneration

- **Feed:** CO_2 :ethane ~1.5, 80ppm SO_2 , 80ppm NO (**FG** case)
- □ Stable performance during 76-cycle (~500hr) testing.

Laboratory Scale Results

Long Term Stability (CAP-case)

Cycle = 2-3hr continuous run followed by 1hr air regeneration

□ Stable performance during 100-cycle (~300hr) testing.

Technical Approach

Work Plan

- Total 1000-hr of total testing using two actual CO₂ streams (FG & CAP)
 - For flue gas stream testing the feed may vary between coal and natural gas flue gas.
 - During integration with the test facility, the flue gas feed was modified to accept feed from the coal unit as well as the newly installed natural gas boiler. This will allow for testing to proceed in the event of an outage or other shutdown of the coal fed boiler.

F

Flow rates for different CO₂ test cases

Test	Ma	ax. flow	rate (L/	'min)	Ethane	Testing
Case	Cap.	Flue	C ₂ H ₆ Total		vol% in	duration
	CO_2	gas		Max.	feed	(hrs)
CAP	10	N/A	5.0	15	≥ 20%	500
CFG	N/A	11.5	0.5	12	≤ 10%	500
NFG	N/A	7.31	2.4	9.7	≤ 20%	-

Actual CO₂ composition

	Actual Composition (vol%)
3	14% CO ₂ , 4.5% O ₂ , 68.5% N ₂ +Ar, 13% H ₂ O, < 1ppm SO ₂ , ~ 50ppm NO
AP	> 99.5% CO ₂ , balance N ₂

Technical Approach (cont.)

- Critical check outs prior to actual operation
 - Empty reactor tube fed with N₂ (temperature set point on preheater and reactor furnace, Feed analysis, GC calibration check),
 - Flow (Process and GC gases) and temperature profile (5point TC)
 - Pressure difference across the bed
 - Periodic data collection and performance assessment on an pre-formulated excel spreadsheet

Technical Approach (cont.)

Catalytic Run Steps

1. Pretreatment: Activation at 650°C and atmospheric pressure under N_2

- **Reaction** run at 650°C: Ethane + FG/CAP + N_2 (optional) + SO₂ (optional)
- Purge: N₂ only at 650°C
 Regeneration: air at 650°C
 Purge: N₂ only at 650°C

 - 6. Repeat 2-5

Cycle (3-8hrs)

Reaction – Endothermic – Temperature drop Regeneration – Exothermic – Temperature increase

Success Criteria

Decision Point	Date	Success Criteria
Go/No-Go Decision Point:	01/31/2020	2 catalysts with at least
Scaled up catalyst		48% (direct flue gas
performance validated		utilization) or 32%
		(captured CO ₂) per pass
		yield
Technical Decision Point:	02/28/2022	Final cost of ethylene
TEA and LCA to determine		compared with
ethylene production cost		conventional ethylene
and net CO ₂ reduction		production and lower
		than \$0.5/kg. Overall net
		CO_2 reduction > 40%

Technical Risks/Mitigation Strategies

Description of Risk	Probability	Impact	Response/Mitigation
Technical Risks:		-	
			Performance of scaled up catalysts will be first
			validated in an existing laboratory scale reactor
Process does not achieve			prior to use in field scale. SR has prior experience
anticipated conversion, yield			catalyst synthesis and scale up through other
upon catalyst scale up	Low	Med	projects
			SR is conducting laboratory scale study to evaluate
			the impact of specific impurities of flue gas. SR will
			also use captured CO ₂ from actual flue gas as an
Flue gas impurities impact			alternative feedstock to direct flue gas utilization.
conversion or cause catalyst			Impurity levels in captured CO ₂ is significantly
deactivation	Medium	High	lower.
Techno-economic analysis			Preliminary model design with laboratory scale
demonstrates poor			testing data show positive economics and life cycle
economics because of			benefits. Two different CO ₂ options and catalyst
technical integration issues	Low	Med	options provide TE/LCA flexibility.

Current Progress - Field Testing Skid

52" x 76" Nitrogen purged skid enclosure to maintain class 1, div 2 parameters. Control panels built to meet specifications per IEEE 1584 and UL 508A.

14

SR

Current Progress - Field Test Unit P&ID

NCCC Specific Timeline

Task Name	Start	End	Resource
Task 4.2 Integration with the host site and commissioning of the skid	Tue, 10/01/19 Mon, 12/07/20	Fri, 01/31/20 Fri, 04/30/21	SR/NCCC
Skid Delivery to NCCC/PC4	02/2020	02/2020	SR/NCCC
Program delayed due to COVID site access restrictions	03/2020	12/2020	-
Skid Integration with host site at PC4	12/2020	03/2021	SR/NCCC
Skid commissioning at host site at PC4	03/2021	04/2021	SR
Task 5 Continuous operation using actual flue gas	Sat, 02/01/20 Mon, 05/03/21	Mon, 11/30/20 Tue, 11/30/21	SR/NCCC
Flue Gas Testing (Coal/Natural Gas)	05/2021	07/2021	SR/NCCC
Captured CO2 Testing	08/2021	11/2021	SR/NCCC

SR

NCCC Testing Phase Overview

Task 4.2 Integration with the host site and commissioning of the skid

- Adherence to industrial codes on skid
- Participation in the HAZOP study
- Arranging location of potential site for skid operation
- Share with SR the available actual CO₂ characteristics

Task 5. Continuous operation using actual flue gas

- Supply of gases (Flue gas, captured CO₂, N₂, air)
- Operational and analytical support, if needed

ASPEN Simulation Model Development

- Models have been completed for both direct flue gas (DFG) and captured CO₂ (CAP) utilization cases.
- Separation schemes considered in the model are at or near commercial stage (TRL 6 or higher). This includes cryogenic separation, sorbent based PSA separations etc.
- Separation scheme steps:
 - <u>CO₂ separation</u>: CO₂ is removed because it can freeze at low temperature in heatexchange and fractionation equipment. CO₂ concentration in the overhead stream of the CO₂ separation are typically below 0.2ppm.
 - <u>CO/C₂H₄ separation</u>: Depending on the concentration of CO and C₂H₄ in the product stream, a pressure swing adsorption (PSA) or cryogenic distillation based system has been applied. With the applied scheme, a final C₂H₄ purity of 99.8% and CO purity of 98% were achieved.
 - <u>C₂ splitter</u>: This tray type distillation column involves separation between ethane and ethylene widely used in commercial steam cracking process and commonly referred to as "C₂ splitter".

Techno-Economic Analysis

CAPITAL COST		
Total permanent Investment incl. land & startup	\$719,620,184	\$410,602,298
Capital depreciation (20-year Straight)	\$33,488,711	\$18,008,873
OPERATING COST (Annual)		
Raw materials	\$132,510,437	\$162,707,271
Utility	\$49,979,844	\$46,138,987
Catalyst cost	\$4,225,285	\$3,968,254
Fixed cost	\$22,396,600	\$12,779,096
General expense	\$61,285,541	\$64,999,975
TOTAL OPERATING COST (ANNUAL)	\$270,397,706	\$290,593,584
OTHER PRODUCTION COST (ANNUAL)		
Intermediate CO2 separation	\$36,960,000	\$72,299,400
CO+C2H4 separation	\$181,779,115	\$35,165,686
Post production CO separation	-	
TOTAL PRODUCTION COST (Annual)	\$522,625,533	\$416,067,542
Cost of ethylene production	\$411/MT	\$302/MT

DFG: Production capacity: 500,225 MT/year Ethylene – 772,575 MT/year CO **CAP: Production capacity:** 500,000 MT/year Ethylene – 879,142 MT/year CO

Future Plans

Complete ongoing project

Complete a cumulative 1000-hr testing on field scale
 Update TEA/LCA

Recommendations for future research include -

 \Box Other sources of real CO₂ wastes: Concentration/Purity

- Product processing and separation
- □ Process scale up with separation
- Co-product utilization

Summary

- Developed Technology
 - Nano-engineered mixed oxide catalyst
 - Thermocatalytic process
 - Utilizes CO₂

- Produced ethylene at lower temperatures than SotA
- Prior Work
 - Lab-scale testing with over 500 hours of catalyst run time proven
 - Highly selective and notable conversions
 - Brought to TRL-4
- Current Work
 - Testing at TRL-5 at a power plant
 - Three options of CO2 feed to test versatility

Southern Research Engineering

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031713

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you! Questions/Comments?

APPENDIX

Southern Research Engineering

Appx: Contact Personnel

• Joel Cassidy – Pl

- Interim Project Leader
- jcassidy@southernresearch.org
- Chanse Appling
 - Process Engineer
- Wes Wilson
 - Sr. Process Technician
- John Carroll (Southern Company)
 - NCCC project coordinator and contact person
- Jadid Samad (Consultant)
 - Co-Inventor/Former Co-PI (Consulting with SR)

Appx: Gantt

Task Name	Start	End	Resource	Oct-2	018 D	ec-2018	Mar-2019	9 Jun-	2019 S	p-2019 D	ac-2019 /	Mar-2020	Jun-2020	Sep-20	20 Dec	c-2020
Task 1: Project management and reporting	Tue, 10/30/18	Thu, 10/29/20	SR			4	-									
Milestone A	Tue, 10/30/18	Tue, 10/30/18	SR	8	٠											
Milestone B	Thu, 11/01/18	Thu, 11/01/18	SR		٠											
Task 2: Field scale preparation and testing	Tue, 10/30/18	Tue, 10/29/19	SR/NCCC/8R			_										
Task 2.1: Catalyst scale up	Tue, 10/30/18	Sat, 12/29/18	SR	2												
Task 2.2: Ethane ODH experiments	Sun, 12/30/18	Sat, 06/29/19	SR				_	_								
Milestone C	Sat, 06/29/19	Sat, 06/29/19	SR													
Milestone D	Mon, 07/29/19	Mon, 07/29/19	SR						٠							
Task 2.3: Procurement and integration of actual flue gas with skid	Tue, 04/30/19	Tue, 10/29/19	SR/NCCC/8R													
Milestone E	Tue, 10/29/19	Tue, 10/29/19	SR							٠						
Milestone F	Tue, 10/29/19	Tue, 10/29/19	SR							٠						
Technical decision point (12-month)	Tue, 10/29/19	Tue, 10/29/19	SR							•						
Task 3: Continuous operation using actual flue gas	Wed, 10/30/19	Sat, 08/29/20	SR/NCCC								-	-	_			
Milestone G	Sat, 08/29/20	Sat, 08/29/20	SR											٠		
Task 4: Techno-economic and life cycle analysis	Sun, 08/30/20	Thu, 10/29/20	SR/8R													
Milestone H	Thu, 10/29/20	Thu, 10/29/20	SR												•	
Milestone I	Thu, 10/29/20	Thu, 10/29/20	SR												٠	
Milestone J	Fri, 01/29/21	Fri, 01/29/21	SR													•

Southern Research Engineering

Appx: Gantt-Updated

Table 1. Tasks and projected timeline.

Task Name	Start	End	Resource
Task 1: Project management and reporting	Wed, 01/02/19	Sun, 01/31/21	SR
Task 2: Field scale preparation and testing	Wed, 01/02/19	Sat, 06/01/19	SR
Task 2.1: Catalyst scale up	Wed, 01/02/19	Fri, 03/01/19	SR
Task 2.2: Catalyst testing in a lab scale reactor	Sat, 03/02/19	Sat, 06/01/19	SR
Task 3 : Technology maturation plan	Sun, 06/02/19	Mon, 07/01/19	SR
Task 4: Procurement and integration of actual flue gas with skid	Tue, 07/02/19	Wed, 01/01/20	SR/NCCC/8F
Task 4.1 Field scale skid preparation and transportation to the host site	Tue, 07/02/19	Sun, 09/01/19	SR
Task 4.2 Integration with the host site and commissioning of the skid	Mon, 09/02/19	Wed, 01/01/20	SR/NCCC
Task 4.3 Development of a baseline ASPEN simulation model	Mon, 09/02/19	Wed, 01/01/20	SR/8R
Task 5: Continuous operation using actual flue gas	Thu, 01/02/20	Sun, 11/01/20	SR/NCCC
Task 6. Techno-economic and life cycle/ technology gap analysis	Mon, 11/02/20	Fri, 01/01/21	SR/8R

Appx: Pricing of Materials/Chemicals

Material	Role	\$/unit
Ethane	Raw material	\$150/Mt
Flue gas	Raw material	\$0.0/Mt
Captured CO ₂	Raw material	\$40/Mt
Natural gas	Utility	\$3.1/ 10 ³ ft3
Steam	Utility	\$3.0/klb

Ref:

1) Ethane price: <u>http://marketrealist.com/2016/05/ethane-prices-fell-4-week-rally-impact-mlps/</u>.

2) Natural gas: eia.gov

3) Steam: How to calculate true steam cost. US DOE. EERE

Appx: Cost of Production

Cost type	DFG	САР
Total permanent investment ^[1]	\$ 811,635,823	\$ 410,602,298
Capital depreciation ^[2]	\$ 35,987,442	\$ 18,008,872
Annual operating Cost	\$ 503,249,579	\$ 398,058,669
Total production cost (annual) ^[3]	\$ 539,237,021	\$ 416,067,542
Ethylene production cost	\$0.424/kg	\$0.302/kg

Production cost in CAP case is similar to the lowest SOTA^[4] case

TEA comparison

Includes 25% contingency, 4% (of TDC) land and 10% (of TDC) start-up
 20-year straight

^[3] Includes capital depreciation, fixed and variable operating cost

[4] Yang, M., & You, F. (2017). Industrial & Engineering Chemistry Research, 56(14), 4038-4051.

SR

Appx: Future Plans

- Transition technology from TRL 4/5 to TRL 6.
 - All necessary components of the technology will be integrated at a relevant environment at a substantially larger scale of 1 kg/hr which will amount to 10-20x scale up from the current field test scale.
 - Host site could be either a coal-fired utility plant or a natural-gas production plant.
 - Process simulation with necessary post-reaction separation will be demonstrated.
 - TEA study would be updated with actual separation and purification results.

Appx: Future Plans

- Further progression through TRL's 7-9 would be achieved by:
 - Initial validation of system prototype in an operational environment.
 - All scaling issues relating to catalysis and separation will be address to obtain purity levels at 1 ton/hr production capacity.
 - Completing TRL 7 will inform further engineering design and enhancements to further develop TEA models that will support further commercialization decisions.
 - TRL 8 & 9 would eventually enable commissioning of a full scale plant and subsequent commercial operation.