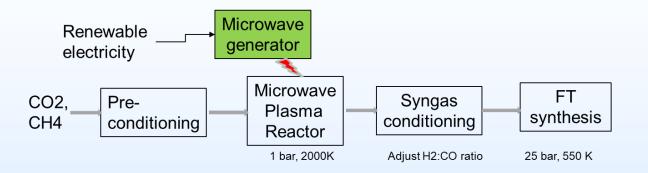
Novel Plasma Catalysis Reformer of CO₂ for Power to Jet Fuel and Energy Storage Grant Number: DE-SC0019791

Leslie Bromberg Maat Energy Co



U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

- Funding : \$1,150,000 (for SBIR Phase II)
- Project Performance Dates
 - August 24, 2020 August 23, 2022
- Project Participants:
 - Maat Energy Co, MA
 - University of Massachusetts Lowell, MA
 - Infra Technology Group, TX
 - Massachusetts Institute of Technology, MA
 - Argonne National Laboratory, IL
- Overall Project Objectives:
 - Low carbon intensity jet fuel by re-using CO₂
 - Maximize CO₂ re-use

Technology Background - 1

- a. Non-catalytic processing:
 - Mostly a thermal process
 - Appropriate temperatures (kinetics adequate at 2000 K)
 - Atmospheric Microwave Plasmas (AMP) provide uniform heating
- b. Technology spinoff from MIT:
 - AMP technology developed at MIT for metal sensing
 - Atmospheric plasma reforming also developed at MIT

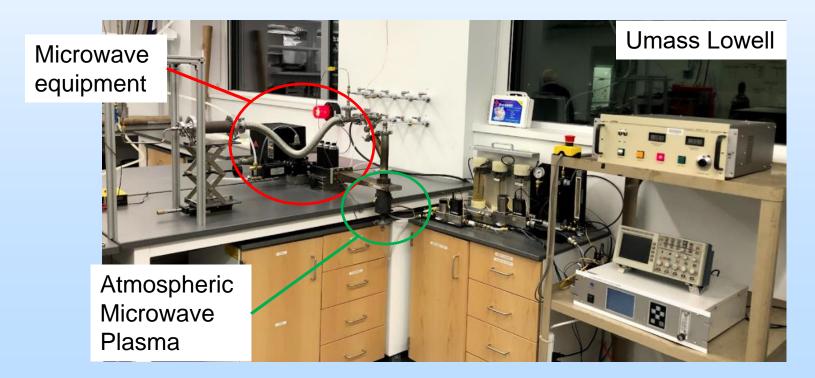
Technology Background - 2

- c. Advantages of technical approach
 - Readily available, mass produced microwave components
 - Efficient, inexpensive, good coupling, highly uniform
 - High reuse of CO₂
 - $3CO_2 + CH_4 \rightarrow 4CO + 2H_2O$
 - Make-up H₂ produced through AMP methane pyrolysis
- d. Technical and economic <u>challenges</u>
 - Present AMP require the use of a dielectric, which requires frequent replacement
 - Atmospheric pressure plasmas operate at high temperature,
 - requiring high energy consumption
 - Renewable electricity consumption to re-use CO₂
 - Jet-fuel manufacturer

Technical Approach/Project Scope

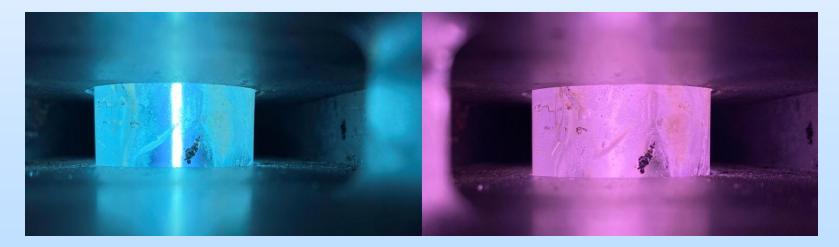
a. Experimental design:

- Developed AMP without dielectric
- Temperature control in atmospheric microwave plasmas
- b. Project schedule
 - AMP testing with appropriate chemistry
 - 1 kW successfully tested
 - 6 kW in preparation, ultimately going to 100 kW (pilot scale)
- c. Project success criteria
 - > 90% conversion of methane/CO₂ (super-dry reforming) with > 90% electricity efficiency


d. Project risks and mitigation strategies:

• Developed two designs for reactor without a dielectric

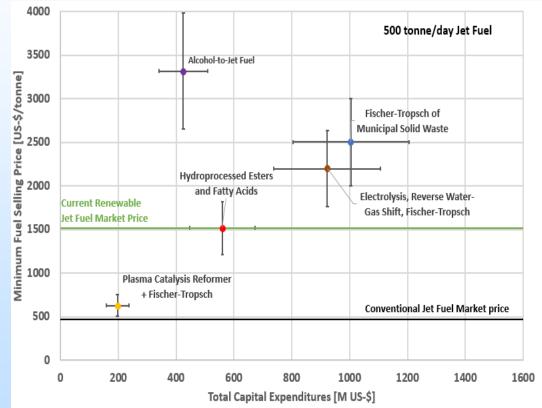
Progress and Current Project Status


Built 1 and 2.5 kW system

- Most testing in 1 kW system
- Increased throughput by temperature control

Laboratory

- Moving to separate laboratory for higher power testing (Cambridge)
 - -6 kW (being installed)
 - 100 kW (being acquired)

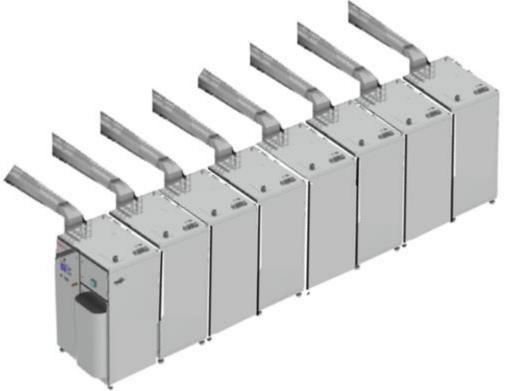


Achievements

- Demonstrated at 1 kW:
 - Electrical energy efficiency of > 60% demonstrated
 - 99% CH₄ conversion efficiency with super-dry reforming
- Demonstration of operation at lower temperatures
 - Temperatures difficult to measure; but:
 - Throughput increased by a factor of 2, enabled by lower plasma temperatures
- Developed two reactors without dielectric
- Testing automatic igniters for plasma initiation 8

TEA

- Goal: low-carbon jet fuel at a minimum selling price of \$625/tonne
 - Teaming with Infra
 Technology Group,
 an FT technology
 developer
 - Cost competitive with present jet-fuel
- Subsidies will make jet fuel more competitive
 - Carbon tax or CO₂ avoidance credit



Scale up

- 100 kW unit is PILOT scale
 - To be completed in Phase II
 - No need of further scaling!
- To achieve higher power, multiple 100 kW units will be multiplexed
- Pilot demonstration not performed in Phase II
 - Thermal/chemical integration, reliability, control work will be needed for a DEMO

Scaling up by multiplexing 8-10 units in one container (1 MW)

. .

Future testing/development/ commercialization

- a. In this project
 - Demonstrating reforming technology to TRL 5-6 (PILOT scale)
 - Investigate total jet-fuel plant (with FT synthesis)
- b. After this project
 - a. Need source of hydrogen to provide appropriate H₂:CO ratio for FT
 - b. Investigating (DOE and internally funded) methane pyrolysis by AMP
 - Same technology, different chemistry
- c. Scale-up potential: Multiplexing 100 kW units! 12

AMP - Summary Slide

- a. Atmospheric pressure plasmas are an attractive means of using electricity for converting CO_2 and methane into CO
 - Low carbon intensity (¹/₄ lower than methane), making jet fuel with ¹/₄ of the carbon intensity of conventional fuel
 - Efficient, high methane conversion
 - Easily scalable to practical commercial units (demonstrated in Phase II)
- b. Need additional hydrogen for the process
 - Use same technology (AMP) for methane pyrolysis
- c. Cost of jet-fuel around the same as present day jet fuel, much less expensive than low carbon alternative options

Appendix

Organization Chart

FT support and technology provider

InfraTech

Jack Haynie

LCA support

Argonne National Laboratory

Dr. Uisung Lee

Project lead, microwave plasma, business expertise, chemistry, TEA

Maat Energy

Dr. Leslie Bromberg – PI, Chief Technology Officer

CEO. KC Tran – Scientist

Dr. Jorj Owen – Physicist

Dr. Jonathan Whitlow – Chemical Engineer Support for small scale experiments

<u>Umass Lowell</u> Dr. Hunter Mack Dr. Juan Trelles

TEA support

<u>MIT</u>

Howard Herzog

Gantt Chart

quarters		1st	2nd	3rd	4th	5th	6th	7th	8th	
Task 1	Applicator design									
	6 kW intermediate power									
	100 kW power									
Task 2	Intermediate power									
	Design									
	Acquisition									
	installation									
	testing									
Task 3	100 kW pilot									
	Design									
	Acquisition									
	installation									
	testing									
Task 4	System Analysis									
	Process description									
	Process simulation									
	TEA									
	LCA									
Fask 5	Commercialization									
				De	Demonstrationf of			Demonstrationf of		
				temperature control			Scalibility (PILOT slace)			
				high conversion low specific energy consumption						