Value-Added Use of Large CO₂ Volumes for Production of Hydraulic Cement

Funded by the U.S. Department of Energy STTR Contract SC0011960

Metna Co.

Lawrence Livermore National Laboratory

Hydraulic Cements

- Portland cement is prevalent, used primarily for concrete production
- Massive and growing consumption of cement, >4 billion tons/yr
- Energy-intensive and polluting production, releasing ~3.6 billion tons/yr CO₂
- The alkaline chemistry of Portland cement makes 'carbonation' reactions detrimental, mitigating value-added and large-volume use of CO₂
- Quantitative gains in the sustainability of Portland cement production have been realized by improving the energy-efficiency of various processes
- Qualitative gains in sustainability and value-added use of CO₂ arguably require the use of alternative hydraulic cement chemistries
- Different cement chemistries were explored; the focus here is on a low-pH one that makes value-added use of the CO₂ content of combustion emissions

Mechanochemistry: An Alternative to High-Temperature Processing of cement

- Pyro-processing (at elevated temperature) of Portland cement requires combustion of fossil fuels, which accounts for 75% of energy use
- Mechanochemistry: Chemical and physicochemical changes of substances induced by input of mechanical energy
- Mechanochemical processing relies upon instantaneous and intense local phenomena which occur at the point of impact in simple milling operations at room temperature and atmospheric pressure

Simplified Mechanochemical Processing of Cement

Conventional:

4

Mechanochemical:

Example Cement Chemistries and Carbonation Effects

- Portland cement
 - $2 \text{Ca}_3 \text{SiO}_5 + 7 \text{H}_2 \text{O} \rightarrow 3 \text{CaO} \cdot 2 \text{SiO}_2 \cdot 4 \text{H}_2 \text{O} + 3 \text{Ca}(\text{OH})_2$
 - Carbonation has detrimental effects: (i) pH drop; (ii) decomposition of calcium silicate hydrate
- A low-pH hydraulic cement
 - $3Ca_4$. $(PO_4)_2$. $0 + 2H_2O \rightarrow Ca_{10}$. $(PO_4)_6$. $(OH)_2 + Ca(OH)_2$
 - Carbonation has beneficial effects: (i) mitigation of pH rise; (ii) transformation of hydroxyapatite into carbonate apatite

Pilot-Scale Production of a Low-pH Hydraulic Cement in Combustion Emissions

Representative Conditions

6

Properties of Combustion Emissions & Hydraulic Cements

Inlet & Outlet Properties of Combustion Emissions

7

Property	Inlet	Outlet
CO ₂ Concentration, %	7.4	1.4
Temperature, °C	51.8	32.7
Relative Humidity, %	100.0	51.2

Cement Properties: FTIR Peak for Carbonate Apatite, and pH & TDS

Air

 CO_2

Processing Environment	рН	TDS, ppm
Air	7.61	674.0
CO2	6.58	996.4

XRD Spectra of Hydrating Cement

Minoral	Curing Time, days				
Mineral	1	4	14		
Calcite	2.4%	3.9%	4.2%		
Hydroxyapatite	3.8%	19.3%	34.9%		
Carbonate Apatite	2.1%	23.6%	44.5%		

Strength Development with Time

9

The New Hydraulic Cement Meets the ASTM C1157 Performance-Based Requirements

Cement Type	Applicable Test Method	GU	HE	MS	HS	мн	LH
Fineness	C204, and C430 or C1891	A	Α	А	А	A	A
Autoclave length change, max, % Time of setting, Vicat test ⁸	C151/C151M C191	0.80	0.80	0.80	0.80	0.80	0.80
Initial, not less than, minutes	Ciar	45	45	45	45	45	45
Initial, not more than, minutes		420	420	420	420	420	420
Air content of mortar volume, max, % ^C Compressive strength minimum, MPa [psi] ^D	C185 C109/C109M	12	12	12	12	12	12
1 day			12.0 [1740]				***
3 days		13.0 [1890]	24.0 [3480]	11.0 [1600]	11.0 [1600]	5.0 [725]	
7 days		20.0 [2900]		18.0 [2610]	18.0 [2610]	11.0 [1600]	11.0 [1600]
28 days		28.0 [4060]	***		25.0 [3620]	***	21.0 [3050]
Heat of hydration, max, kJ/kg [cal/g]	C1702						
3 days						335 [80]	200 [50]
7 days		***	***		***	***	225 [55]
Mortar bar expansion	C1038/C1038M						
14 days, % max		0.020	0.020	0.020	0.020	0.020	0.020
Sulfate expansion (sulfate resistance) ^E 6 months, max, %	C1012/C1012M			0.10	0.05		
1 year, max, %		48.8	443		0.10		***
i you, max, 10	0	ptional Physical	Requirements		0.10	100	88.8
Option A—Air entraining ^{C,F}	C185	poorial r riyaloar	riequiteriterite				
Air content of mortar, vol %	0100						
max		22	22	22	22	22	22
min		16	16	16	16	16	16
Option R—Low reactivity with alkali-silica- reactive aggregates ^G Expansion at	C227						
14 days, max, %		0.020	0.020	0.020	0.020	0.020	0.020
56 days, max, %		0.060	0.060	0.060	0.060	0.060	0.060
Early stiffening, final penetration, min,%	C451	50	50	50	50	50	50
Compressive strength, ^D 28 days, min, MPa	C109/C109M			28.0	***	22.0	

Energy Content and Carbon Footprint

Energy Contents in Laboratory and Pilot Scale Processing

Scale	Specific Energy, kJ/kg	Specific Energy per Unit Strength, kJ/(kg.MPa)
Laboratory	10,836	0.474
Pilot	1,623	0.042

Net CO₂ Signatures in Industrial-Scale Processing

11

- New Cement: ~0.02 ton per ton of hydraulic cement
- Portland Cement: ~0.9 ton per ton of hydraulic cement

Conclusions

- Selection of cement chemistry is critical for value-added use of carbon dioxide as a raw material in production of hydraulic cements
- Mechanochemical processing can significantly reduce the energy demand in industrial-scale production of hydraulic cements, and can eliminate the need for combustion of fossil fuels to generate thermal energy
- Carbon dioxide can be (preferably) captured directly from combustion emissions in the course of mechanochemical processing of hydraulic cements
- With proper selection of cement chemistry, the end product quality improves with mechanochemical processing performed in combustion emissions vs. air
- Industrial-scale processing in combustion emissions can produce hydraulic cements with significantly reduced carbon footprint, energy demand and cost
- Mechanochemical processing can realize its full potential when implemented at industrial scale