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• Find out how much the stored CO2 is there, and 
quantify the uncertainty. 10 million ton 
plus/minus 50%, or plus/minus 5%?

• Multi-scale datasets (e.g., seismic, flow)
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Background
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Project Overview:  
Goals and Objectives

• develop methodologies for fast seismic full waveform 
inversion of CASSM datasets for simultaneously 
estimating velocity and attenuation, and with data 
assimilation; (Tasks 2 & 3)

• develop joint Bayesian petrophysical inversion of seismic 
models and pressure data for providing and updating 
CO2 saturation models; (Task 4)

• demonstrate the methods using multiple multi-scale 
datasets including (surface and borehole) synthetic, 
laboratory, and field CASSM datasets. (Tasks 5 & 6)
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Accomplishments to Date
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Task 2.0
• Developed a simple formulation of time-domain viscoacoustic

wave equation (2.1)
• Built the numerical scheme and numerical code of solving the new 

wave equation (2.1)
• Derived adjoint operators for further developing the algorithm of 

full waveform inversion (2.2)
• Developed the paralleled code of Q full waveform inversion (2.2, 

ongoing)
• Completed validation tests in Frio (2.3)

Guangchi Xing

Milestone report was submitted in April 2020



To find a better efficient wave 
simulator (subtask 2.1)
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Zhu and Harris (2014) Geophysics
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Wavefield snapshot

15/19
Xing and Zhu (2019) JGR-Solid Earth
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Wavefield snapshot

Xing and Zhu (2019) JGR-Solid Earth



Subtask 2.2: Adjoint operators for joint full 
waveform inversion
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Interaction between forward and adjoint wavefields -> FWI sensitivity Kernel

Adjoint WavefieldForward Wavefield Interaction Wavefield

Time Integral

Sensitivity Kernel

• Vel. & Atten. -> Interact differently

Data 
Synthetic

Subtask 2.2: Adjoint operators for joint full 
waveform inversion



Subtask 2.2: Adjoint operators for joint full 
waveform inversion

Algorithm
While (not converged) do

Compute gradient 𝑔 (adjoint-state method)
Approximately solve 𝐻Δ𝑚 = −𝑔 (inner CG loop)
Line search & model update

end while
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Target model (velocity & Q)

Final model (velocity & Q)

Search direction at iteration #1

Gradient-based: (a) velocity, (b) attenuation;
Hessian-based: (c) velocity, (d) attenuation

Xing and Zhu (2021) in prep



Accomplishments to Date
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Task 3.0
• Developed a time-lapse ensemble KF full waveform inversion 

algorithm of seismic velocity & Q (3.1)
• Completed synthetic tests in Frio 2D models (3.2)
• Completed synthetic tests in 3D Cranfield models (3.2)

Chao Huang
(2018-2020)

Milestone report was submitted in July 2020



Frio-II results
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Seismic P-wave velocity model 

Huang and Zhu (2020) GJI



Frio-II 2D seismic monitoring 
tests
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Huang and Zhu (2020) GJI
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New Frio-II results
Seismic P-wave attenuation model 

True

Inverted

Uncertainty

Huang and Zhu (2021) SEG abstract



3D Cranfield
validation tests

17

leakage

Seismic imaging section + 
two wells

3D seismic velocity & 
density profiles



3D Cranfield validation tests

18Color scale: seismic velocity
Black: CO2 plume



3D Cranfield validation tests

19Color scale: seismic velocity
Black: CO2 plume Huang and Zhu (2020) GJI
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Memory usage

How fast the HiEKF time-lapse 
FWI is?

• 3D seismic FWI in Cranfield: 111x121x61. If original EKF is applied, 
the covariance matrix size is 819291x819291, which is 
approximately 5 TB, while if applying HiEKF, the maximum matrix 
size is 819291x528, which is 1550 times less than EKF.

20

log
GByte

We’re here!
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Project Overview:  
Goals and Objectives

• develop methodologies for fast seismic full waveform 
inversion of CASSM datasets for simultaneously 
estimating velocity and attenuation, and with data 
assimilation; (Tasks 2 & 3)

• develop joint Bayesian petrophysical inversion of seismic 
models and pressure data for providing and updating 
CO2 saturation models; (Task 4)

• demonstrate the methods using multiple multi-scale 
datasets including (surface and borehole) synthetic, 
laboratory, and field CASSM datasets. (Tasks 5 & 6)



Accomplishments to Date
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Task 4.0
• Competed the Cranfield subsurface geologic models (4.1)
• Developed the joint inversion algorithm (4.2)
• Developed flow simulations of the Frio and Cranfield

experiments. (4.3)
• EFK seismic-flow inversion (4.3)
• Direct inversion of seismic-flow using Deep Learning (4.4)

Shams Joon



4.2 Joint seismic-pressure-petrophysics inversion in 
an OSSE environment

• Model Setup: An observation system simulation experiment 
(OSSE) is conducted using a reservoir model of the Cranfield 
GCS site. 

• Model Simulation: CO2 injection, plume evolution, and 
migration over a period of 90 years is simulated (ground truth).

• Geophysical measurements: P-wave seismic velocity (Vp), 
attenuation (Qp), and pressure (Pwf) observations are 
synthesized by randomly perturbing the ground truth and 
applying rock physics models. 

• Data assimilation: The observations are assimilated at varying 
time intervals: once a month for the first 2 years and once a 
year for subsequent years. Using ensemble-based data 
assimilation, EnKF and EnKS, the impact of individual 
observations is compared with their combined impact in the 
form of prediction uncertainty. Rock physics models are 
incorporated in the data assimilation method to transform 
state variable from state space to observation space (i.e., 
computing seismic responses using reservoir properties along 
with CO2 saturation and pressure changes).

• Uncertainty analysis: The prediction uncertainty is estimated by 
comparing the assimilated results of CO2 saturation and 
reservoir pressure changes against the ground truth.



Ensemble Kalman Filter (EnKF) for 
inverting seismic attributes

EnKF’s goal is to update state vector, 
which in this case contains pressure (P) 
and gas saturation (Sg):

X! =
𝑃"
𝑆#,"

…
𝑃%
𝑆#,%

= X + K#&'((
𝑉!
𝑄!

− 𝑓 X )
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• Combining continuous 
measurement in the form of Vp, 
Qp, and Pwf improves prediction 
estimates of CO2 saturation (Sg) 
and reservoir pressure (Pr) in the 
simulated Cranfield GCS site.

• EnKS- Vp, Qp,& Pwf: The average 
mean absolute error (MAE) 
between the deterministic 
ground truth and the assimilated 
Sg estimates is <0.03 and <3000 
kPa (10%) for Pr.

• Error analysis is sensitive to the 
choice of assimilation algorithm.

• EnKF- Qp only: EnKF is 
vulnerable to over-, under-
shooting and filter divergence for 
highly nonlinear relationships, 
namely that between Qp and Sg, 
as dictated by the rock physics 
model. 

Cranfield Assimilation Results: Prediction Error



FRIO II EnKF Results 
(preliminary)



Joint Data Assimilation: Summary of 
Findings

• Combining seismic and pressure 
observations significantly reduces forecast 
error

• Including a Rock Physics Model in the 
data assimilation introduces additional 
nonlinearity, which can cause erratic 
behavior in forecasts

• Error analysis is sensitive to the choice of 
assimilation algorithm
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Permeability                                        Gas saturation                                      Surface displacement 

Input Output 1 Output 2

SubTask 4.4:  Demonstrate workflow using deep learning (DL)

• Developed and trained DL-based surrogate models of carbon reservoir 
simulation models

• Developing joint inversion models by using observable reservoir responses to 
invert parameters

Comparison between 
DL predictions and 
reservoir simulations
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Reservoir properties 
(e.g., permeability, 

porosity)

CO2 Saturation (SCO2)

Rock properties (e.g., 
P-wave velocity)

Seismic data

Direct deep 
learning 
inversion

Workflow to simulate training samples

Goal: To directly predict SCO2 from seismic data

Dataset: Using rock physics and fluid flow physics 
simulation, numerous seismic data and SCO2 are 
generated. The simulations will mimic field settings (e.g., 
Cranfield).

Method: We design a convolutional neural network 
(CNN) based encoder-decoder, such that the input of  
CNN takes in full waveform seismic data in time domain, 
and outputs SCO2 directly in spatial domain.

SubTask 4.4: 
Deep learning based direct seismic to CO2 gas saturation inversion 
(in progress) 
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SubTask 4.4: 
Deep learning based direct seismic to CO2 gas saturation inversion 
(in progress) 

Time lapse full 
seismic shot 

gathers

CO2
saturation 

maps

CNN based 
encoder-decoder 

model

Input
Output
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Project Overview:  
Goals and Objectives

• develop methodologies for fast seismic full waveform 
inversion of CASSM datasets for simultaneously 
estimating velocity and attenuation, and with data 
assimilation; (Tasks 2 & 3)

• develop joint Bayesian petrophysical inversion of seismic 
models and pressure data for providing and updating 
CO2 saturation models; (Task 4)

• demonstrate the methods using multiple multi-scale 
datasets including (surface and borehole) synthetic, 
laboratory, and field CASSM datasets. (Tasks 5 & 6)



Accomplishments to Date
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Task 5.0 (Rice U.)
• Developed a mesoscale dense CASSM dataset 

appropriate for the validation of the proposed inversion 
techniques. 

Tanner Shadoan

Full tank with exterior sensors



Task 5: 
Laboratory CASSM CO2 Injection Study

Goal: Develop mesoscale (~2-3 m) testbed for
experimental acquisition of GCS-relevant CASSM
datasets in a controlled environment.

Motivation: Provide test datasets for inversion
methodologies developed in other portions of the
project with appropriate physics, instrumentation
limits, and supporting datasets.

Challenge: Complicated laboratory construction
effort in a period where laboratory work has
encountered operational barriers (e.g. COVID).

Subtask 5.1: Experimental design and fabrication:

Subtask 5.2: Experimental acquisition:

Subtask 5.3: Data processing and analysis:



Meso-Scale Tank Experiment Design
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General operational goals: 

Injection: Replicate up-dip scCO2 migration to 
understand utility of CASSM in real-time mapping 
applications (use dipping formations to allow gravity 
induced flow).

Dissolution: Design de-gassed water injection system 
to allow CASSM monitoring of seismic signature of CO2 
dissolution.

Geometry: Four wells for CASSM/secondary sensor 
acquisition. One well for gas injection.

Boundary conditions & monitoring: Side ports for P/T 
measurements and boundary induced flow. 4 on each 
quadrant except for source side (5). Use arrays of side 
ports to control/measure lateral pressure gradient.

Ground Truth: Two 1-m dielectric probes (12 points) for 
monitoring CO2 saturation (ground truth).



Pre-modeling Meso-Scale Injection Experiments
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Injection Simulation: Conducted 3D simulation of a CO2 injection inside a meso-scale 
reservoir using a two-phase reservoir simulation software (MRST).

True Geometry: Physical model used for simulation is the designed meso-scale 
experiment currently being fabricated, which includes a reservoir and cap-rock inside a 
1000-gallon tank. Permeabilities based on sands selected (next sections).

Observations: At rates/pressures considered, experiment will run to completion in less 
than a day. Highest saturations are directly above injection well and along seal boundary.



Pre-Modeling of Seismic Response
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• Forward Modeling: Elastic property models (VP and Q-1) were computed using White and 
Dutta-Ode’s patch saturation model from flow simulation results.

• Results: The models show that different CO2  saturations yield unambiguous elastic 
properties when combining Vp & Qp; important for determining CO2 saturations during the 
experiment. Vp & Qp perturbations are sufficient for easy measurement with CASSM system.

• Take-Away: With good results from the forward model, we are confident in the mesoscale 
model testbed design. 



Meso-Scale Experiment: Infrastructure

Finished lab Utilities drop 2 ton hoist

• Large (6+ ft sand 
tank) challenging 
to site.

• Opportunity to 
conduct lab 
remodel around 
tank (Fall 2019 –
Spring 2020).

• Space included 
high ceiling, 24” 
slab floor on 
grade for large 
loads, 2 ton 
ceiling hoist for 
moving heavy 
objects into tanks. 

• Pole-mounted 
utilities (power, 
water, gas, data 
transfer) and 
frame added to 
service tanks.



Meso-Scale Experiment: Development 1

Broad comment:  
many procurement 
tasks were 
constrained by 
COVID-19 in 2020/21

Tank: Designed and 
procured special-
purpose tank for sand 
containment with port 
system (Poly-
Processing)

Tank Size: 963 
gallons, 5.4’ OD, 6’ 
high (delivered Sep. 
2020).

Packing Media: 
Obtained 12,000 lbs
of washed sieved 
sand (100, and 40/70 
mesh) for tank 
packing (delivered 
April 2021).

12 klbs of sand …

Tank on deliveryTank design



Meso-Scale Experiment: Development 2

CASSM System: In 
concert with LBNL, 
developed lab-scale 
CASSM electronics stack.

Sensors: 40 pre-amplified 
hydrophones (x-well), 10 
monitor sensors (single 
well) [HTI-96].

Sources: 22 4” piezo 
sources (tested).

Recording: Custom 1 MB, 
18 bit, 48 channel A/D 
system (D-TAQ).

Timing: Full system (A/D, 
D/A) slaved to rubidium 
clock to reduce long-term 
drift (SRS).

Side Ports: Pressure 
transducers & 
thermocouples to track 
boundry conditions.
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Current Work: 
• Testing/integration side-wall port thermocouples and 

pressure transducers  
• Finishing final leak tests.

Aug. 2021:  Pack tank with media
Sep-Oct: 2021: Initial CASSM tests/baseline
Winter 2021/2022: Gas injection experiments (1st set)
Spring 2022: Long-term dissolution tests

Full-column leak test Full tank with exterior sensors

Meso-Scale Experiment: Development 3



Project Summary

FY22 Q1

FY21 Q3

FY21 Q3



Synergy Opportunities

• develop methodologies for fast seismic full waveform 
inversion of continuous active source seismic monitoring, 
(CASSM) datasets;  ---- DAS data (DE-FE0032058)

• develop deep-learning based full waveform inversion of 
seismic models and pressure data for providing and updating 
CO2 saturation models;

42

Thank you for your attention!
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PhD student: Guangchi Xing 
Task 2

PhD student: Ismeal Dawuda
Task 4.1

Leading task 4

Leading task 5

Task 4.2/4.4

Thank you all!

Postdoc: Chao Huang/Xuejian Liu
Task 3, 6, 7

PhD students: Shams Joon/Zi Xian Leong 
Task 4.2, 4.3, 4.4

PhD student: Tanner Shadoan (Rice U.)
Task 5

Task 4.1
Leading ALL tasks
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Benefit to the Program 
• This project is closely related to Program’s goal of 

developing and validating methodologies and
technologies to measure and account for 99 percent 
of injected CO2 in the injection zones.

• The proposed methodology will enable us to delineate 
the CO2 plume boundaries with great confidence, 
addressing FOA goals including “…detect stored CO2
and assess the CO2 plume boundaries over time 
within the target reservoir…”
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Benefit to the Program 
• The integrated inversion results from the Bayesian 

approach can give the estimate realizations of CO2
saturation models but also can quantify the limits of 
detection and thresholds of uncertainty, directly 
addresses FOA requesting “…quantify the limits of 
detection and thresholds of uncertainty… methods 
should take into account the qualities of fluids (i.e., 
CO2 saturation, composition, etc.)”.

• “Real-time” ability to delineate CO2 plume boundaries 
and quantifying CO2 saturation using seismic CASSM 
and pressure data should allow DOE’s investment in 
future monitoring systems that eliminate the expensive 
and personnel-intensive effort of independent inversions.
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Gantt Chart
Budget Period 1 Budget Period 2

Task Description Year 1 Year 2 Year 3 Year 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 Update project management plan

2 Joint FWI for Vp and Qp

2.1  Derivation of viscoacoustic equation

2.2  Theoretical development

2.3  Validation tests *
3 Time-lapse FWI with data assimilation

3.1  Data assimilation

3.2  Validation tests *
4 Bayesian inversion technique

4.1  Reservoir modeling

4.2 Pressure inversion

4.3  Bayesian inversion framework *
5 Lab experiments

5.1  Experimental design and fabrication

5.2  Experimental acquisition

5.3  Data processing and analysis

6 Demonstration

6.1 Laboratory data

6.2  Field data

7 Synthesis of results
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