

A Highly Sensitive Real-Time Subsurface Sensor for CO₂ Leakage Monitoring

DE-SC0021479

Shixuan Zeng Bettergy Corp.

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Oil and Gas Research Project Review Meeting – Carbon Storage August 2 - 11, 2021

Presentation Outline

- 1. Project Overview and Bettergy Introduction
- 2. Background and Concept
- 3. Technical Status
- 4. Project Schedule
- 5. Summary

1.1 Project Overview

Goals and Objectives

- Develop a highly stable and highly CO₂ sensitive material
- Design and fabricate the sensor structure
- Integrate the material into the as-fabricated sensor platform for CO₂ sensing
- Demonstrate the sensor's capability of real-time detection of low concentration CO₂ flow

1.2 The Company

Bettergy develops and commercializes innovative energy and environmental technologies, with expertise in nanopore engineered membranes and advanced battery technologies

- Talented Team
 - 16 employees and consultants, including 7 PhDs, with a broad range of expertise
- Intellectual Property
 - 6 issued U.S. Patents and 7 pending U.S Patent applications
- □ \$16M in grants and contracts
 - From DOE, ARPA-E, DoD, NASA, NIH, NSF and NYSERDA
- **Commercialization Experience**
 - Spin out of a battery and membrane technology now in full-scale prototyping stage
- Numerous academic collaborators

1.3 Project Organization Chart

1.4 Benefits of the Program

Project Benefits

- A "plug-and-play" sensor will assist the existing and future CO₂ injection process
- Advancing carbon capture and storage (CCS) technology, helping to achieve "Carbon Free"
- Significant impact on the market adoption of downhole monitoring sensors

Program Objectives

- Increasing private sector commercialization of our sensor technology
- Stimulating technological innovation of subsurface sensors in the private sector
- Improving the return on investment from DOE-sponsored SBIR project
- Creating new, highly skilled jobs for the nation

2.1 Background

Subsurface CO₂ Monitoring --- Problems

DOE SBIR Solicitation FY2021, Topic 24c.

- Innovative technologies to measure plume location, pressure front and leakage conditions are sought
- Bettergy proposed a real-time CO₂ leakage sensor for CCS applications

Injection well integrity
CO₂ plume migration
Reservoir leakage

https://www.netl.doe.gov/coal/carbonstorage/faqs/carbon-storage-faqs

2.1 Background

*** The space between CO_2 injection casing and bore hole wall is <u>very limited</u> (~35 mm), making it very challenging for sensor implementation.

1. DOE Project Report: DE-FE0004001 2. https://www.netl.doe.gov/coal/carbonstorage/faqs/carbon-storage-faqs

2.1 Background

State-of-the-art Subsurface CO₂ Sensing and Challenges

Leakage Detection Techniques	Challenges					
Laser-based Optical Sensor ¹	Signal accuracy; complicated packaging; stability issue; cost					
Shallow 2D Seismic Sensor ²	Dissolved CO_2 or low-saturation CO_2 detection near well; sensitivity; cost					
Soil gas monitoring ³	Localized leakage detection; analysis and sampling time; use of tracers; cost					
Groundwater monitoring ⁴	Analysis and sampling time; potential use of tracers; cost					
Reservoir Fluid Monitoring ⁵	Analysis and sampling time; labor-intensive; cost					

 DE-FOA-0001258, Richard Wainner
Rutters, H. et al., 2013.
Oldenburg and Unger, 2003; Klusman, 2011, Shevalier et al., 2005.
Annunziatellis et al. 2009, Schuster et al. 2009
Freifeld and Trautz 2006

Proposed Subsurface CO₂ Leakage Sensor

*** System level projection for our proposed sensor in underground CO₂ leakage detection and/or plume migration monitoring.

Sensor requirements (Pain points)

- Physically and chemically robust
- Small in size
- \succ Highly sensitive to CO_2
- In-situ, real-time signal response
- Subsurface environment
- Low manufacturing cost, low O&M cost

What is a coaxial cable sensor?

A Typical Coaxial Cable

By analyzing <u>Reflected</u>, <u>Transmitted or Interfered</u> signals¹, the coaxial cable sensor can detect: Physical parameters: e.g. temperature², torsion. Chemical changes: e.g. gas, liquid.

1. J. Huang, Sensors, (2013) 2. A. Trontz, Sensors, (2015)

> Previous work on coaxial cable sensor

- spectrums detected by CC-FPI upon the liquid analyte composition changes¹.
- Resonant frequency shift.

A. Trontz, Sensors, (2015)
S. Zeng, Sensor and Actuator A: Physical, (2017)
S. Zeng, MJNN (2018)

2583 9

700.00

39.09

2666.5

99.09%

98,19%

91.58%

84.46%

81.30%

68.49%

Proposed work

We propose to develop a highly CO_2 sensitive material and integrate it with a CC-FPI sensor for real-time detecting low concentration CO_2 .

Sensor requirements for subsurface CO₂ leakage detection:

- Physically and chemically robust
- ✓ Small in size
- ✓ In-situ, real-time signal response
- ✓ Scalable
- ✓ Low manufacturing cost, low O&M cost
- > Highly sensitive to CO_2 (this work)

Based on our previous work, we can conclude that this CC-FPI:

- has demonstrated chemical sensing capability
- is highly robust against harsh conditions
- has high resolution for low concentration analyte detection
- has the potential in scaling-up applications
- is made of low-cost, off-the-shelf commodities
- is easy to manufacture

Expected Outcomes

- 1. A novel CO_2 adsorbent will be developed with high CO_2 adsorption capacity, fast diffusion rate, high stability and low cost.
 - Potential CO₂ adsorbent with higher carbon removal efficiency
 - Special CO₂ affinity will advance carbon separation processes
 - Understanding fundamental gas diffusion mechanism in the material
- 2. A novel coaxial cable sensor for real-time detecting low concentration CO_2 will be demonstrated.
 - A future sensor platform technology for chemical detection
 - Specially designed for harsh environment applications
 - Combine sensor device development with fundamental material research

Tasks and Accomplishments

Task I. Material Synthesis and Characterization

- \checkmark Explore and optimize the material synthesis procedure
- ✓ Characterization and material performance results will be delivered

Task II. Sensor Fabrication

- ✓ Explore sensor functionality with different structures
- ✓ Fabricate sensor with different materials

Task III. Sensor Evaluation

- ✓ Evaluate the as-fabricated sensor with a lab apparatus
- Current Work > Sensor's sensitivity, response time and detection limit will be tested
 - Use sensor data to guide material development

Task IV. Preliminary System Design and Cost Analysis

- ✓ Sensor system design based on practical applications
- Preliminary technical economic analysis (TEA) will be provided

Selected Results

Bettergy's CC-FPI CO₂ sensors

35 sensors fabricated, more on the way...

S11 cycling tests, $Cco_2 = 250$ ppm and 600 ppm, 4 cycles with air regeneration

Selected Results

Signal response of sensors made of different adsorbent material --- new fundamental study.

Challenges and strategies

Research Challenges	Mitigation Strategies						
Material synthesis issues	Modify synthesis conditions such as temperature, time or composition.						
Sensor assembling issues	Design and fabricate new sensor structure that works the best.						
Sensor test issues	Modify sensor testing conditions, adjust testing instrument methods, using advanced control systems from the vendor.						
Environment factors impact	Calibration, multiple experiments.						

4. Project Schedule

Project Timeline

Task\Month	1	2	3	4	5	6	7	8	9
Task I. Material Synthesis and Characterization	Х	Х	Х	Х	Х	Х			
Task II. Sensor fabrication			Х	Х	Х	Х	Х	Х	Х
Task III. Sensor evaluation				Х	Х	Х	Х	Х	Х
Task IV. Preliminary System Design and Cost Analysis								Х	Х
Final Report									Х

4. Project Schedule

Milestones and plans (next quarter)

Milestone I. CO₂ sensitive material development, <u>Aug. 2021</u>

> Material properties are optimized for this sensing application.

Milestone II. More Sensors fabricated, Sep. 2021

The as-fabricated sensor shows well-defined signals.

Milestone III. CO₂ detection tests, Oct. 2021

Sensor parameters such as sensitivity, response time, detection limit will be monitored and further optimized.

Milestone IV. Sensor's economic feasibility demonstrated, <u>Nov.2021-Jan. 2022</u>

> TEA analysis, market research (interviews, future customers).

This program aims at developing a cost-effective sensor technology that can real-time monitor CO_2 leakages for CCS applications.

- A novel CO₂ sensitive material was developed
- A new sensor configuration for harsh environment chemical sensing was proposed and fabricated
- The sensor was demonstrated for real-time, low concentration CO₂ detection
- The sensor's reusability was demonstrated with multiple sensing cycles

Thank you!

Appendix: Bibliography

- 1. Wainner, R., 2015, US Department of Energy SBIR Phase I & II Projects DE-FOA-0001258.
- 2. Rutters, H., et al., 2013, State-of-the-Art of Monitoring Methods to evaluate CO₂ Storage Site Performance, CGS Europe Report NO. D3.3.
- 3. Oldenburg, C.M. and Unger, A.J.A., 2003, On Leakage and Seepage from Geologic Carbon Sequestration Sites: Unsaturated Zone Attenuation. *Vadose Zone Journal*, v. 2, p. 287-296, available at <u>https://doi.org/10.2136/vzj2003.2870</u>
- 4. Annunziatellis, A., Beaubien, S.E., Ciotoli, G., Finoia, M.G., Graziani, S., Lombardi, S., 2009, Development of an innovative marine monitoring system for CO2 leaks: system design and testing, *Energy Procedia*, v. 1, p. 2333-2340, available at https://doi.org/10.1016/j.egypro.2009.01.303.
- 5. Schuster, U., Hannides, A., Mintrop, L., and Körtzinger, A., 2009, Sensors and instruments for oceanic dissolved carbon measurements, *Ocean Sci.*, v. 5, p. 547–558, available at <u>https://doi.org/10.5194/os-5-547-2009</u>.
- 6. Freifeld, B.M. and Trautz, R.C., 2006, Real-time quadrupole mass spectrometer analysis of gas in borehole fluid samples acquired using the U-tube sampling methodology. *Geofluids*, v. 6, p. 217-224, available at <u>https://doi.org/10.1111/j.1468-8123.2006.00138.x</u>
- 7. Trontz, A, Cheng, B, Zeng, S, Xiao, H, Dong, J., 2015, Development of Metal-Ceramic Coaxial Cable Fabry-Pérot Interferometric Sensors for High Temperature Monitoring. *Sensors*. V. 15, P. 24914-24925, available at <u>https://doi.org/10.3390/s151024914</u>
- 8. Huang, J, Wang, T, Hua, L, Fan, J, Xiao, H, Luo, M., 2013, A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications. *Sensors*. v. 13, p. 15252-15260, available at <u>https://doi.org/10.3390/s131115252</u>
- 9. Zeng, S., Trontz, A., Zhu, W., Xiao, H., Dong, J., 2017, A metal-ceramic coaxial cable Fabry-Pérot microwave interferometer for monitoring fluid dielectric constant, Sensors and Actuators A: Physical, v. 257, p. 1-7, available at https://doi.org/10.1016/j.sna.2017.02.004.
- 10. Zeng, S., Trontz, A., Cao, Z., Xiao, H. and Dong, J.. 2018 Characterizing the gas adsorption dependent dielectric constant for silicalite nanoparticles at microwave frequencies by a coaxial cable Fabry-Pérot interferometric sensing method. Madridge J Nano Tech. v. 3, p. 100-107.
- 11. Trontz, A., Zeng, S., Cheng, B., Xiao, H., and Dong, J., 2020, A metal-ceramic coaxial cable with multipoint Fabry-Pérot interferometers for monitoring distributed high temperature, Measurement, v. 162, p. 107943, available at

https://doi.org/10.1016/j.measurement.2020.107943.

Appendix: Background

Carbon capture and storage (CCS) is the separation and capture of carbon dioxide (CO_2) from the emissions of industrial processes prior to release into the atmosphere and the storage of the captured CO_2 in deep underground geologic formations.

Major CCS Methods

- Saline formations
- Oil and natural gas reservoirs
- Unmineable coal seams
- Organic-rich shales
- Basalt formations

Appendix: Background

- <u>Oil/natural gas extraction</u> leaves a permeable and porous volume for CO₂ storage.
- These "reservoirs" are ideal <u>geologic storage sites</u> as they have conditions suitable for CO₂ storage.
- Injecting CO₂ can <u>push fluids towards producing</u> <u>wells</u> --- Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) recovery

