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Project Objective

Distributed Optical Fiber Distributed Optical Fiber Sensors
Chemical Sensors (Additively Embedded in Casing)
(Embedded in Cement)

FILLCEMENT

Develop and Demonstrate:

- A suite of complementary technologies for
wellbore integrity monitoring

FORMATION ROCK

- Chemical sensing of high priority
parameters (pH, corrosion onset, etc.)

- Optical fiber and passive wireless
(SAW, SilC) technologies

Silicon IC
. Wireless Devices
in Cements

Qverall Goal: A suite of technologies functionalized for chemical sensing
and identification of wellbore integrity risks BEFORE they result in failures.



Technology #1: Distributed Optical Fiber Sensors

Sensing Principle : Evanescent Wave Sensors

Sensing Layer

Light Source |— Silica Core —3| Detector

e
F-doped Silica Cladding

Distributed Sensing

» Eliminate Electrical Wiring and Circuitry at the
Sensing Location (Stability)

» Tailored to Parameters of Interest Through
Functional Materials (Functionalization)

» Compatibility with Broadband and Distributed
Interrogation (Geospatial / Multi-parameter)

| > Injected Laser Light

Rayleigh backscatter forms a permanent spatial
“fingerprint” along the length of the fiber.

Deployment Scenario: Embedded Within Wellbore Cement and Casing Metal



Technology #2: Passive and Wireless SAW Devices

Sensing Principle : Functionalized Surface Acoustic Wave Devices

IDT1  Sensing Layer IDT 2

a "

Sensing
> 3 Av  Af A
pitch pitch/a layer e
(a) dl Ju ]
Y(t) ) probe pulse Grating Reflectors I
[ Co » Passive and wireless operation
T Refected puses )>> » Rugged and stable for harsh
H— environment applications
- e > Telemetry is a primary challenge,
must be addressedin parallel

Deployment Scenario: Embedded on Interior and Exterior Casing Surfaces



Technology #3: Wireless Miniature SilC Devices

Sensing Principle : Functionalized Silicon Integrated Circuit Devices

Oscillator PMU TX Antenna
\ —————————

Sensing Amp
\

Q N E GES

» Miniaturized devices with active
functions through IC processing

» Wireless energy harvesting and
storage to eliminate batteries

R = 18 > Telemetry is again a major

| i | e e b challenge to be addressed

S o >

Network Analyzer

Penetration Depth (cm)

x & 2 B 8 8

Deployment Scenario: Embedded Within the Wellbore Cement



Additional Efforts: Sensor Embedding

Optical Fibers Embedded in CT Scans of Embedded Optical Fibers Embedded in
Wellbore Cement Optical Fibers Casing Alloys

Sample after embedding

SS 316 material

Proof-of-Concept Sensor Embedding Efforts Combined with Structural and
Performance (CT scans, Permeability, Porosity, Corrosion) Benchmarking. 7



Project Structure: Tasks and Outcomes

Overall Task Structure
Task 1: Project Management

Task 2: Technology Maturation Plan & Industry Engagement
Task 3: Chemical Sensing Layer Research & Development

Task 4: Multi-Functional Optical Fiber Sensor Development & Deployment

Task 5: Multi-Functional Wireless Based Sensor Device Development

Task 6: Sensor-Infused Wellbore Material Performance Characterization

Key Project Deliverables and Outcom
#1: New Chemical Sensing Layers for High Alkalinity / High T in Wellbore Relevant Conditions

#2: Maturation of New Wireless / RF Sensing Technology for Subsurface
#3: Field Validation of New Fiber Optic pH Sensing Technology



Project Progress: Industry Advisory Group

Advisory Group Members

Name

Glen Benge

Dennis Dria

George
Koperna
Igor Kosacki

John Lovell

Tim Ong

Pierre
Ramondenc

Austin
Vonder Hoya

David
Wagenmaker

Company
Benge Consulting

Myden Energy
Consulting, PLLC

Advanced
Resources
International, Inc.

WellDiver

MicroSilicon Inc.

BHP Billiton

Schlumberger

Pioneer Natural
Resources USA

Southern Company
Gas

Expertise

Wellbore isolation & well
cementing

Fiber-optic technology
development &
implementation

CO; EOR & storage,
reservoir engineering

Sensor development

Temp & pressure
measurement systems,
Wellhead asphaltenes
sensor

Strategy planning-

technology & innovation

Coiled tubing well
interventions, real-time
fiber-optics

Geophysical technology

Reservoir engineering

Ranking of Geochemical

Parameters to Be Monitored

pH

H2S, HS

Dissolved CH4 and CO>

Corrosion ions (Mn?**, Fe**, etc.)

vuibs (WIN [

lonic strength, Solution
conductivity

TDS

Dissolved oxygen

cr

O |0 |N |

Na*

Ca2+

+ Advise on matters that directly concemn
the technology developed for industry:
* Wellbore environment for
different applications
» Hierarchy of sensing applications
to industries represented
* Deployment challenges
* Wellbore integrity
» Longevity (sensor and power)
* Industries represented:
* CO, Storage
+ Geothermal
» Waste Water Disposal
* Oil Industry
» Field demonstrations are still in early
stages

Regular Meetings Have Occurredwith the Industry Advisory Group to Provide
Feedback and Guide Technology Maturation Plans for the Overall Project.



Project Progress: MeO,-based Chemical Sensing Layers

Coating of pH
sensitive materials

MMF Coreless Fiber
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Oxide Based Sensing Layers were Developed for pH Sensing with Stability in

Elevated Temperature and High Alkalinity Environments.

10




Project Progress: MeO,-based Chemical Sensing Layers
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ALD-TiO, Coated Optical Fiber Sensors Demonstrated Improved Stability and
Reversibility for pH Sensing at Room Temperature and 80 °C. 11



Project Progress: Distributed Chemical Sensing
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Silica Coated Optical Fiber Sensors Have Been Used to Demonstrate
Multi-Point Distributed pH Sensing in High pH solutions.
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Project Progress: Distributed Chemical Sensing
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Multi-parameter sensing (T and pH) using the same optical fiber (double-
clad fiber) was demonstrated for temperature compensated pH sensing.
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Project Progress: Polymer-based Chemical
Sensing Layers

Polymer network with covalently bonded pH indicator reduces the leaching-out.

(0]

Cross-linker = VLO/\/O\/\O/\,O\/\O)V

Polymers with pH Indicators are also Developed for
High Temperature and High Alkalinity Environments. 14




Project Progress: Polymer-based Chemical

Sensing Layers

Sensor fiber responding to various pH solutions
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Project Progress: Fiber Optic pH Sensing when
Embedded in Cement

Cement coreswith man-
made defectsfor
embedding sensor fibers
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Fiber Optic pH Sensors Demonstrated pH Sensitivity for W eeks
when Embedded in Cement.
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Project Progress: Sensing Layer Scale-Up

Optical fibers are passed from the feed spool, through a polymer coating pool, into the
photocuring tube, and rolled onto the collection spool at the base of the coating tower.

Optical
fiber

Polymer |
coating
pool

Fiber optic chemical sensor rolled on a spool.
40 m coated fiber was demonstrated in this project.

| ©
| &
!
=l
o
2
o 3
A

Established Fiber Recoating Facilities are Being Leveragedto Scale Promising
Inorganic and Organic Sensing Layers to m- and Eventually km-Scale Lengths. 17



Project Progress: Optical Fiber Sensor
Deployment and Field Validation

PHASE 0: Lab Studies of Sensors in Cement. Status: Completed
PHASE I: Shallow Water Well Test (20 ft. depth). Status: August 2021
PHASE I11: Deep Water Well (up to 2,000 ft. depth). Status: TBD

Sensor integrated
cement core

Field optoelectronic
hardware

Multi-band optoelectronic

light sources and detectors ——

enable signal correction for -k
. Raw Sig| I"’f"

non-pH environmental Raw Reference I8

effec'[S 5 Detected!

Shallow Well Deployment

Suspension Rope co?

® o -

Fiber Sensor Reels

72900 [ TR U ST Ot
73

Bubble Gas

~20 ft
~10 ft

~15ft

Multiple Sensor-integrated Cement Cores will be Deployed in the Wells

to Demonstrate Distributed Sensing.

% in S8 Tubing to
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Project Progress: SAW pH and Corrosion sensing

Shear Horizontal Surface Acoustic Waves for
Agueous Phase Applications wl o
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SAW Device Modeling and Experiments for Aqueous Phase Operation.
Demonstrated Velocity Changes and Attenuation with Various Salinity and pH.

Demonstrated Sensitivity to Fe Mass Loss/Corrosion at Low pH. 19



Project Progress: Wireless Telemetry Concepts

« Simulations of a Dipole Antenna + SAW in cement « Simulation of Inductive Coupling

I
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« Simulations and Measurements of Helical Antenna around a Coaxial Cable

213(3H3 3.38 GHz )

Frequency (GHz) 0

Wireless Telemetry Methods are Being Explored for Compatibility with Applications
In Subsurface Media Including Novel Antenna and Coupling Designs. 20



Project Progress: Wireless SIIC pH Sensor

Circuit Architecture of pH Sensor Designs
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SilC Design/ Fabrication Enabled Successful Device Operation Including
the Integration of Electrochemical Sensing Electrodes for pH Sensing.



Project Progress: Wirelessly-Powered SilC Device

Status of the New MHz Radios To Push the Operating Range

Radio 1: Power Harvester,
PMU, ADC, ASIC, UWB Radio

1.37 mm

Radio 2: PCB Antenna, Power
Harvester, PMU, and UWB
Radio used to demonstrate

50m operation range

42.4 mm

_ 204mm |

12.6 mm
Width: 0.6 mm

Successfully Demonstrated 50m
Operating Range (Radio 2)

™ ﬁHF Tx 0— :
A i;'-‘%*.’ =

‘51 meters

» Successfullydemonstrated harvesting electromagnetic energy at 10s of
MHz and used it to power the SilC sensor.

« Demonstrated a range of 50m with a wirelessly-powered radio
operating at 10s of MHz while maintaining a small antenna size (~4cm).

22




Project Progress: Sensor Embedding in Cement
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3D CT Scans and Cement Property Measurements were Performed to
Understand Structural Impacts of Embedded Sensors on Cement. 23



Project Progress: Sensor Embedding in Casing Steel

Embedded Fibers in Steel Temperature Sensing
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Project Progress: Al-Enhanced Optical Fiber Sensing

Distributed Acoustic Sensing (DAS) System with Sensor Enhanced Fiber
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Al-Enhanced Methods to Analyze the Optical Fiber Sensing Data

e ) 25
for Defect Identification of a Steel Pipe



Project Progress: Low-cost Custom Interrogators

Distributed Optical Fiber Sensor Interrogators
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Low-cost Distributed and Multiplexable Optical Fiber Sensing
Interrogators Have Been Developed.

Low-cost telecom
tunable laser.

FBG interrogation
rate at 100 kHz.
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Project Summary: Success and Next Steps

Project Success

Fiber optic sensor technology for pHand corrosion sensing at 80°C and high pH
Aqgueous phase sensing of novel SAW devices through simulation and experiments
Wirelessly-powered SilC sensors for successful pH sensing in a liquid phase
Demonstrated embedded sensors in cement to prepare for field validation

Novel concepts of wireless subsurface telemetry methods and early lab testing
Al-enhanced distributed optical fiber sensing for defect identification

Impacts of sensor embedding in cement and steel were explored and evaluated
Low-cost custom interrogators for distributed and multiplexable optical fiber sensing

Next Steps

Field validation of embedded fiber optic pH sensors in shallow and deep wells

Accomplishments

5 Patent Applications and 2 Reports of Invention
21 Technical Journal Publications and 3 Major Literature Reviews

32 Presentations and Conference Papers
27
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Disclaimer

This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United States
Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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