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Vision: What could next-gen
subsurface “visualization” look like?

o Both regional & site-specific
o Updated in real time

o Provides automated anomaly
detection

o Provides interface for rapid
scenario exploration

Modified 2017 USGS Oklahoma Hazard Map, for
illustration purposes only

Amber Warning:

High probability of felt earthquakes.

Consider reducing injection at:
Well F-2L-56 (confidence 95%)
Well F-2L-55 (confidence 50%)

Click here to model response options.

= .
| Texas [ ]

y Time period
@ 19732009

() 2010-2011
@ 20122014

@ 2015-June 2017
Magnitude
° 30-35

O 36-40
) 41-45

() as-58
2017 Chance of Damage
10% - 12%

5% - 10%
2% - 5%
1% - 2%
<1%




Task 3: Imaging Pressure and Stress

Ten-year vision will require three enabling technologies:
1. Rapid and autonomous geophysical monitoring

2. Real-time modeling and data assimilation tools

3. Visuadlization and decision-support frameworks




Enabling Technology 1: Rapid Geophysical Monitoring
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Passive Seismic Imaging POC: Chengping Chai

ML can provide better picks, locations, and tomography .... at orders of magnitude less cost.
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Active Seismic Imaging POC: Jyofi Behur

Offset (km) Offset (km)

Seismic Image

Challenge:

4D seismic processing is time-consuming and very expensive

Opportunity:

Use trained CNNs as a rapid seismic processor
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Active Seismic Imaging POC: Jyofi Behur

Ground Truth ML Result
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Active Seismic Imaging POC: Jyofi Behur

Ground Truth ML Result

Could open up whole new imaging

workflows:
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o Use rapid NN for quick-look

Year 5 - Year O
Perturbation in
Pore - pressure

results while awaifing more time-

intensive processing

o Combining high-resolution and

low-resolution surveys to lower

Estimated AScoz

monitoring costs
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Enabling Technology 2: Real-Time Modeling & Data Assimilation

Integrated
System Model

f

Reservoir Simulation Workflow Wrappers




Autonomous Inversion of Deformation Data POC: Jeff Burghardt

Challenge:
Workflows for determining rock properties and

state-of-stress are often slow and clunky.

Proposed Approach:
Combine NNs, a physics-based finite element

model, and a gradient-based inversion

algorithm to rapidly estimate elastic properties

from sparse strain measurements. strain meters in injection
and two monitoring wells
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Enabling Technology 3: Visualization & Decision Support

Integrated
System Model

Decision-Support Tools




Seismicity Hazard Forecasting & Operator Support

POC: David Coblentz / Chris Sherman
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Phase | Targets

Automated Monitoring & Characterization

Study 1A4: Seismic event detection and source properties with machine learning

Study 1B: Artificial intelligence enhanced body and surface wave tomography

Study 1C: Using ambient noise to estimate stress orientation

Study 1D: State of stress from triggered earthquakes

Study 1E: Deep learning and anomaly detection applied to distributed acoustic sensing (DAS)
Study IF: Pre-injection characterization by transfer learning to identify features below active
seismic resolution from induced events.

Real-Time Modeling & Data Assimilation

Study 2A: Predictive analysis of pressure and temperature in carbonate reservoirs
Study 2B: State of stress modeling from geophysical joint inversion

e Study 2C: Embedding deep learning models into finite element models to learn unknown physics

directly from field monitoring data

Visualization & Decision Support

Study 3A: Operational Forecasting of Induced Seismicity
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SMART Task 3: Pressure and Stress

Roadmap and First-Generation Prototypes

Deliverables D3.1.2 and D3.2.2

31-March-2021




Phase Il Goals

Microseismicity

—)
~
.l‘ —

3D/4D Seismic Imaging
MicroSeismic Stress
Imaging
X-hole / VSP
Pressure
Electro-magnetic Imaging
DAS/ fiber Saturation
Imaging
BH Gravity Temperature
PT Imaging
- . Fracture/fault
Injection profiling ,
Imaging
DATA MANAGEMENT &
— IMAGING TASK
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Seismicity
prediction toolbox

Operational
data

Induced seismicity engine

| seismicity forecast

Real-time

y

Operational Inverse modeling
data toolbox
History matching engine

Risk Indicators

Forward modeling engine

DYNAMIC MODELING TASK

Real-time
forecasting and
visualization

Evaluation of
what-if scenarios

and visualization

DECISION SUPPORT &
VISUALIZATION TASK




Questions?
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Thank you!

Joshua White: jawhite@linl.gov
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