Stacked Greenfield and Brownfield ROZ Fairways in the Illinois Basin Geo-Laboratory: Co-optimization of EOR and Associated CO₂ Storage

DOE Project Number DE-FE0031700

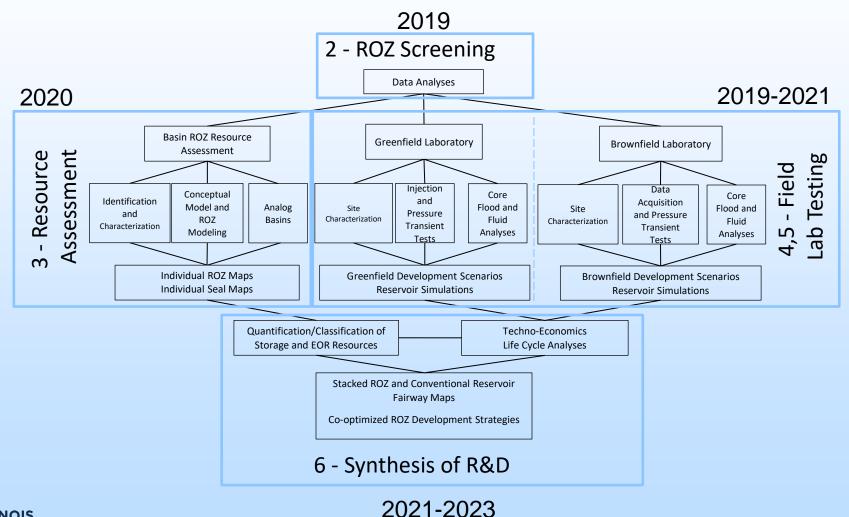
Nathan Webb - PI

Nathan Grigsby, Fang Yang, Scott Frailey

IILLINOIS

Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

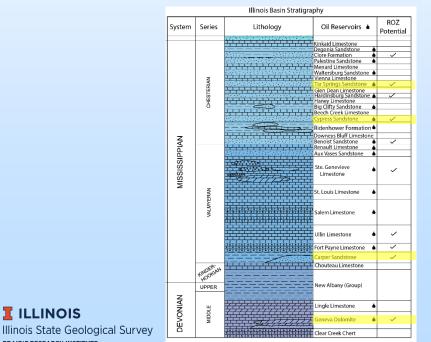
U.S. Department of Energy National Energy Technology Laboratory 2021 Carbon Management and Oil and Gas Research Project Review Meeting


August 5, 2021

Program Overview

- Funding: \$4,373,828
 - DOE Share: \$3,455,947
 - Cost Share: \$ 917,881
- Project Performance Dates: 2/1/19 to 1/31/23
- Project Participants:
 - University of Illinois Illinois State Geological Survey (Prime)
 - Podolsky Oil Co.
 - Projeo Corp.
 - Indiana Geological and Water Survey

ILLINOIS Illinois State Geological Survey Prairie Research Institute


Project Tasks

ILLINOIS Illinois State Geological Survey Prairie research institute

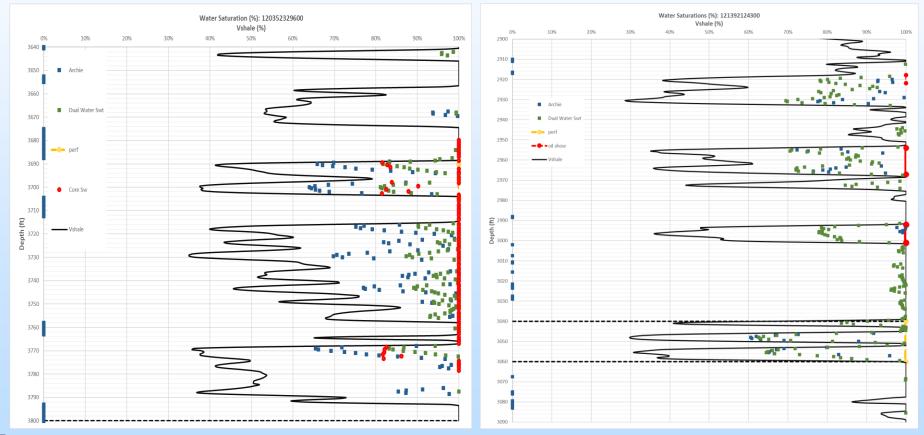

ROZ Screening

- Selected four formations for resource assessment based on:
 - Geologic properties (porosity, permeability, fairway potential)
 - ROZ indicators (oil shows, core with $S_o > 0$, DSTs with sulfur water – e.g. Trentham and Melzer 2013)
 - Data availability (well logs, core)

IILLINOIS

PRAIRIE RESEARCH INSTITUTE

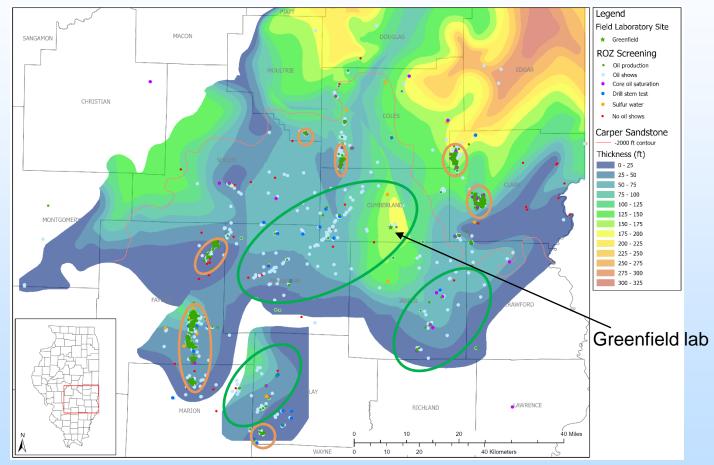
Resource Assessment


Characterizing ROZs in selected formations

- Generating regional maps of reservoir rocks and seals
- Identifying ROZs based on historical data
- Characterization using well log analysis
 - Constrain parameters by formation for log analysis
 - Input: R_w, porosity, *m*, clay properties
 - Output: POWC, OWC, S_{or}

Resource Assessment

- Greenfield Example: Holsapple 2B
- Oil saturation observed in core
- Archie saturations never exceed 20% So
- Perforated 3690-3705, not productive

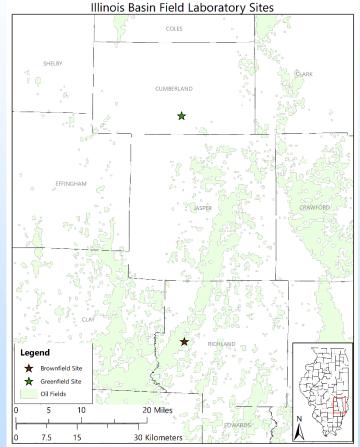

- Brownfield Example: Swits 1
- Oil shows in upper sandstone beds; tested but are not productive
- Archie saturations 35-40% So in lower bed, <30% in other beds
- Perforated 3040-3060 was productive

ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Resource Assessment

Carper Sandstone Example

 Next: Define prospect boundaries and Extrapolate OWC and S_{or} and to estimate OOIPs


Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Field Laboratory Tests

Greenfield Test \checkmark

Existing well with validated greenfield ROZ

- Completed pressure transient tests (9/20)
- Completed CO₂ injection test (huff n' puff) to acquire oil rate change (12/20)
 - Characterize ROZ
 - Demonstrate efficacy of CO₂-EOR in ROZ
- Continuing post-CO₂ production
- Field work concluding fall 2021

Brownfield Test \checkmark

New well in previously characterized brownfield ROZ

- Drilled new well for reservoir characterization
 - Collected core and logs to validate Cypress ROZ
 - Correlating with previous field laboratory RST logging
 - Investigating geologic controls on residual oil saturation
 - Refining geologic interpretation
 - Sampled reservoir fluids
 - Performed drill stem test
- Field work completed fall 2019

Greenfield Test: Challenges

Well: Drilled in 2016 to Carper Ss., pumped ~6 months, no measurable oil production

- Observed fluid production (~200 bbl/d) not possible (15' perforated zone; 0.2 mD)
 - Suspect natural fracture network
- Simulations indicated:
 - 1-2 bbl/day oil rate from CO₂ test
 - Injected CO₂ likely to remain in fractures and have limited contact with oil in low permeability matrix
 - High pressure could stimulate production, but quickly depletes once injection stops
 - Fracture/matrix communication hard to quantify

Greenfield Test: Design

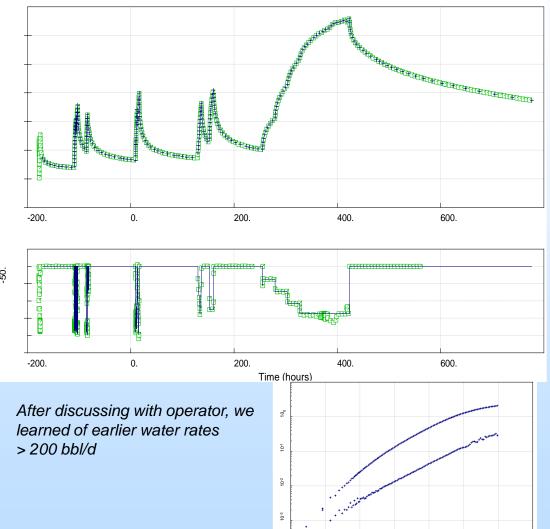
- Pressure transient test
 - Attempt to confirm natural fracture network and determine if it permits communication between units
- CO₂ test
 - Designed to maximize oil rate increase
 - Use equipment from previous ISGS CO₂-EOR projects
 - Inject volume of CO₂ that the budget allows (1,000 tons) at pump capacity (up to 60 tons/day)
 - Use findings to calibrate reservoir simulations to determine parameters that most influence oil rate
 - Injection rate, volume, more injectors would yield more oil

Greenfield Test: Field Activities

- Pressure Transient Tests (8/19/20 10/6/20)
- Baseline Production (10/16/20 11/10/20)
 - Produced 5,000 bbl water; no oil
- CO₂ Injection (11/13/20-12/13/20)
 - Injected 1,000 tons of CO₂
- CO₂ Gas Production (12/22/20 2/12/21)
 - Produced ~150 tons

- Well Fluid Production
- Flowing (3/2/21 4/15/21)
 - 2,000 bbl water, <5 bbl oil
 - 240 tons of CO_2
- Pumping (4/21/21 5/18/21; 6/10/21 present)
 - ~11,000 bbl water, ~35 bbl oil
 - 320 tons CO₂
- Restored reservoir fluids into well

ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE


Greenfield Test: Field Activities

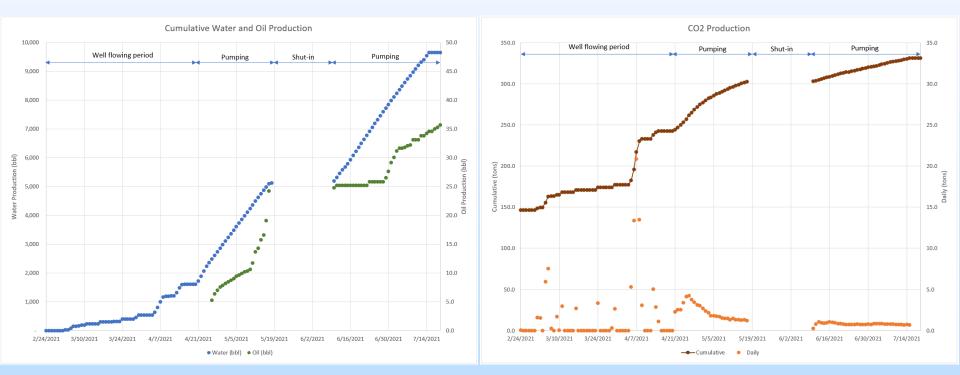
- Images depicting the 3 major stages of the project
 - Left Pump operation during baseline production
 - Center CO₂ tank, CO₂ injection pump skid, and line heater during CO₂ injection
 - Right Post-CO₂ production with instrumented wellhead and gas/liquid separator with gas prover. Dynamometer test in progress to evaluate pump efficiency.

Greenfield Test: Results

- Pressure Transient Tests
 - Step rate tests
 - Pressure falloff tests
 - Designed for 20 mD
- Results
 - Expected 1,000s psi response;[§]
 found 10s psi response
 - Very slow pressure falloff
 - Hydraulic fracture dominated

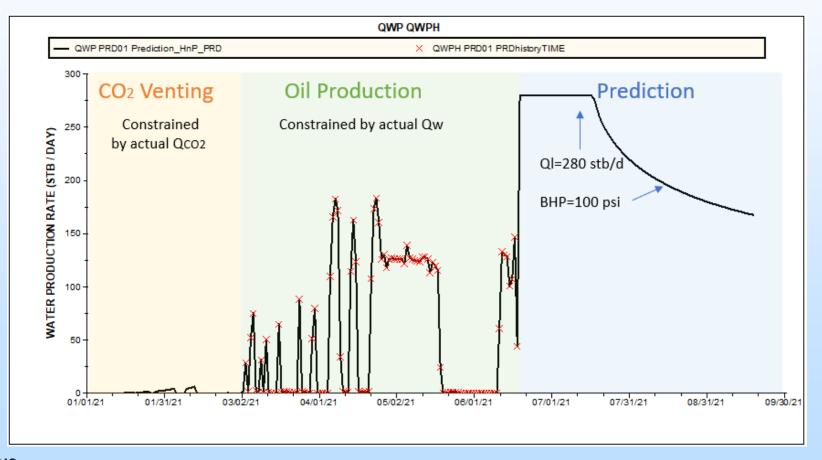
104

10-2

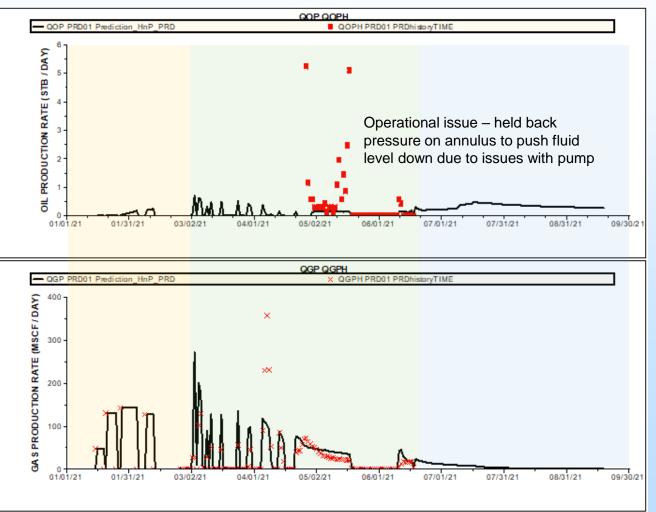

Delta-T (br

10¹

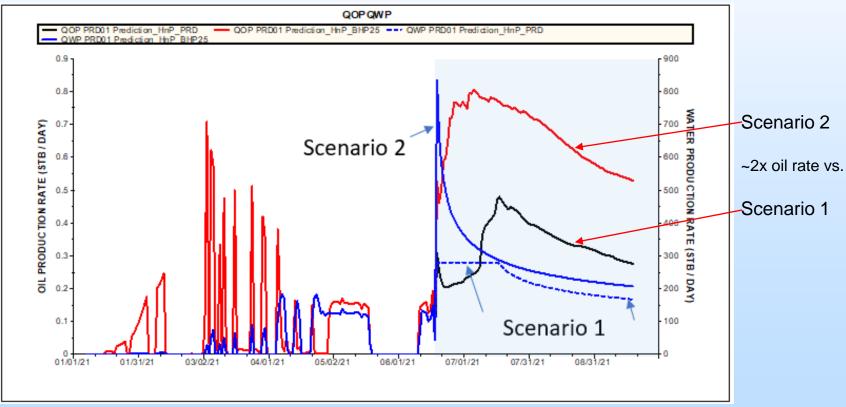
ILLINOIS Illinois State Geological Survey Prairie Research Institute


Greenfield Test: Results

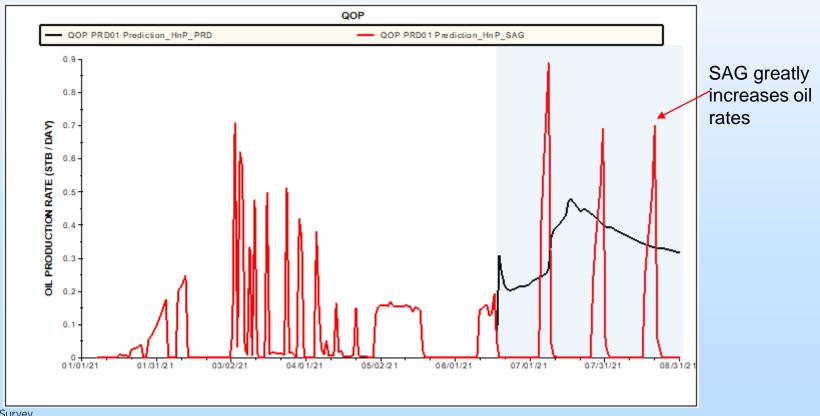
- Measurable oil production with continuous pumping
 - Oil rate variations related to operational issues (flow rate, +/-chemical demulsifier)


ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

• Purpose: Match historical fluid production (incorporating operational constraints) to predict future oil rate


ILLINOIS Illinois State Geological Survey Prairie research institute

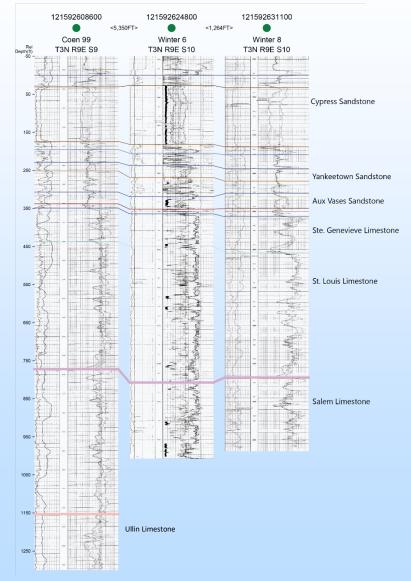
• Simulated (black) vs. actual (red) oil and gas production rates


ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

- Prediction: Improve oil production by pumping the well off
 - Scenario 1: produce at 280 stb/d, then constrain BHP=100 psi
 - Scenario 2: quickly pump well off, then constrain BHP=25 psi

ILLINOIS Illinois State Geological Survey Prairie Research Institute

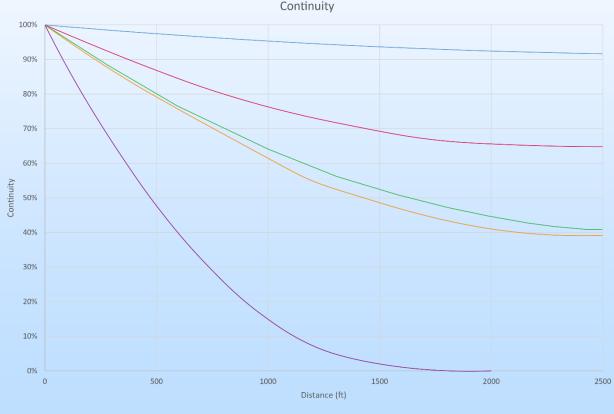
- Improve oil production-Recycle CO₂ with SAG
 - Baseline: produce at 280 stb/d total fluid limit
 - SAG: inject CO_2 @ 40t/d for 7 days, soak 7 days, then produce 7 days at 280 stb/d total fluid limit
 - Implication: SAG not reasonable for single well, but could be effective as part of greenfield ROZ development


Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Greenfield Test: Conclusions

- Demonstrated CO₂-EOR from greenfield ROZ
 - Limited oil, but production is ongoing
 - Operational factors have a big impact
 - Using field data to calibrate reservoir simulations
 - Additional oil production predicted as well is pumped off
 - Simulations indicate SAG may have efficacy at field-scale development
- Challenges
 - Geologically complex reservoir
 - Equipment limitations
 - Production rate limit reduced oil production
 - Oil/brine emulsion difficult to break without chemical
 - Some CO₂ and oil bypasses meters
 - Disagreement between meters

Brownfield Lab: Stacked Characterization


- Correlated and mapped stacked ROZs and conventional reservoirs across Noble Field
 - Six producing reservoirs; additional formations with oil indicators
 - Leveraging data from new well for determining oil saturations

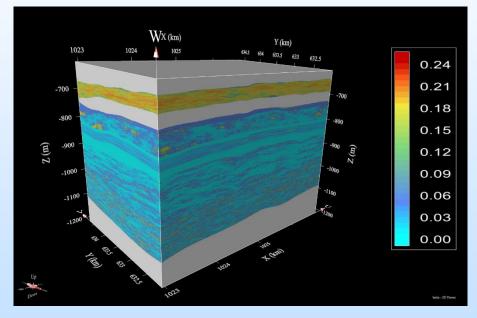
ILLINOIS Illinois State Geological Survey Prairie research institute

Brownfield Lab: Stacked Characterization

- Characterizing formations separately to identify development scenarios for EOR and storage prior to simulation and co-optimization
- Evaluating reservoir continuity (e.g. Stiles 1976)
 - Helps in determining efficacy of different pattern configurations

Illinois State Geological Survey

Brownfield Lab: Stacked Characterization


Predicting (pre-simulation) effect of heterogeneity, continuity, and pattern size on CO₂ EOR and storage using dimensionless performance curves

Formation	Heterogeneity	EO	R%	Stora	age%
		40-acre	80-acre	40-acre	80-acre
Cypress	Low	13.0%	14.5%	48.5%	48.5%
Aux Vases	Moderate	11.1%	12.0%	42.6%	41.3%
Ste. Genevieve	Moderate	11.1%	12.0%	42.6%	41.3%
St. Louis	High	9.2%	9.6%	36.7%	34.1%
Salem	Moderate	11.1%	12.0%	42.6%	41.3%
Ullin	Moderate – Low*	12.1%	13.2%	45.6%	44.9%

- CO₂ EOR and storage decrease with increasing heterogeneity
- CO₂ EOR increases with larger pattern size
- CO₂ storage efficiency decreases with increasing pattern size for moderate and high heterogeneity formations

Brownfield Lab: Stacked Model

- Developed geocellular model tailored to each formation
 - Different lithology, geometry, data coverage
 - 2,000 ft gross thickness results in large cell count (~7.5M)
- Uncertainty in oil saturation
 - Logs capture depleted reservoir(s)
 - Comingled production
 - Connectivity
- Next: begin reservoir simulations of stacked ROZ/reservoir EOR and storage

Synergy opportunities

- Methodologies for finding and characterizing ROZs in mature basins developed as part of this study are applicable in other basins
 - We look forward to comparing the results with findings from the Williston and Powder River Basins
- Siliciclastic ROZs in other basins are expected to have similar characteristics to Illinois Basin ROZs
 - Lessons learned from CO₂ flooding in siliciclastics in the Powder River Basin would be applicable to our ROZs

Project summary

Key Findings

- Carper Sandstone greenfield ROZ oil can be mobilized with CO₂
 - Continued production will reveal the magnitude of success for EOR and storage

Lessons Learned

- Field laboratory research requires extra attention to detail to:
 - Reconcile schedule (project vs. operator vs. weather), meet all stated objectives, stay on budget
 - Ensuring safe operations (managing pressure) when working with CO₂ in the field can be time consuming and expensive

Next Steps

 Leverage field data to calibrate simulations as we pivot to co-optimization, LCA, and classification of CO₂-EOR and storage resources in stacked reservoirs

Acknowledgments

- Research herein supported by US Department of Energy contract number DE-FE0031700, FPM Andrea McNemar
- Through a university grant program, IHS Petra, Geovariences Isatis, and Landmark Software were used for the geologic, geocellular, and reservoir modeling, respectively
- For project information, including reports and presentations, please visit:

http://www.isgs.illinois.edu/research/ERD/NCO2EOR

Appendix: Program Overview Objectives

DOE Program

 Develop specific subsurface engineering approaches leveraging CO₂ injection field tests and applied research and development, that address research needs critical for advancing CCS to commercial scale

Stacked ROZ Fairways in ILB Geo-Laboratory

- Screen for ROZs using analysis of empirical data and basin evolution modeling
- Characterize stacked brownfield/greenfield siliciclastic ROZs at field laboratory sites
- Conduct injection tests and collect and analyze core and logs at field laboratory sites
- Employ calibrated simulation models and life-cycle analyses for identifying development strategies

Appendix: Technical Approach

Project Milestones

Milestones provide success criteria for gaging the qualitative and quantitative performance of the project and are decision points to determine if the project should proceed.

BP: Task	Milestone title	Planned completion	Actual completion	Verification method
BP 1 Task 1	Complete project management plan	03/01/2019 (year 1)	03/01/2019	PMP file
BP 1 Task 1	Project kickoff meeting	02/01/2019 (year 1)	11/06/2018	Presentation file
BP 2 Task 4	Finalize plan for data collection and testing at greenfield laboratory sites	07/31/2020 (year 2)	7/31/2020	Report in subsequent quarterly report
BP 2 Task 5	Finalize plan for data collection and testing at brownfield laboratory sites	04/30/2020 (year 2)	11/28/2019	Report in subsequent quarterly report
BP 2 Task 5	Complete testing of fluid and core samples of target CO ₂ reservoir(s) from field laboratory sites	03/01/2021 (year 3)	07/2021	Report in subsequent quarterly report
BP 3 Task 6	Complete strategies for co-optimization of CO ₂ -EOR and storage in stacked reservoirs (w/ROZs and depleted reservoirs)	01/31/2022 (year 3)		Report in subsequent quarterly report
BP 3 Task 6	Complete fairway maps	10/31/2022 (year 4)		Report in subsequent quarterly report
BP 3 Task 1	Document project results	01/31/2023 (year 4)		Submit final report

Appendix: Technical Approach

Risk Matrix

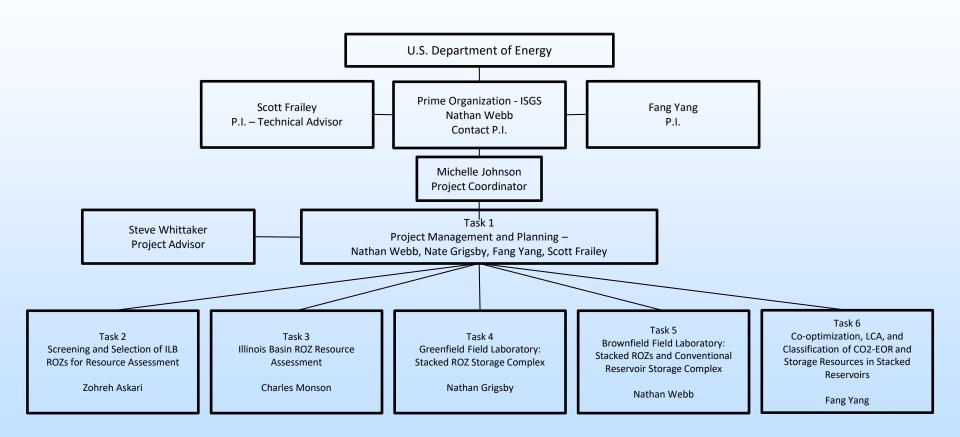
The risk matrix is used to identify, assess, monitor and mitigate technical uncertainties and schedule, budgetary and environmental risks associated with the project

		Risk Ratin	g			R	lisk Ratir	ng	
Perceived Risk	Prob.	Impact	Overall	Mitigation/Response	Perceived Risk	Prob.	Impact	Overall	Mitigation/Response
Perceiveu hisk	FIUD.	impact	Overall	Strategy		(Lov	v, Med, I	High)	Strategy
	(Lo	w, Med, H	igh)		Management Risks:	-			
Financial Risks:					Occasional				f staff time is mandatory to
Field laboratory test budget exceeded	Low	Med	tl	additional cost occurs due to ne delay of field personnel or quipment issues, change in	unavailability of personnel	Med	Low	Low	eep on schedule, non-project taff will be available to work on project temporarily.
			-	uration or number of ROZs ested would be reduced	Loss of key personnel	Low	Med		emporarily allocate tasks among team and initiate hire
Cost/Schedule Risks:					Planning and Oversight	t Risks:			
Delay in field activities due to severe weather condition	Low	Med	a p	project meeting would be held mong research team and field ersonnel to reschedule and eprioritize tasks	Well cannot be drilled in year 2 due to rig availability or weather	Low	Low	Low k	Greenfield lab schedule will be moved up and switched with the brownfield schedule
					EH&S Risks:				
Technical/Scope Risks: Delay in acquiring data	Low	Med	15	ssemble and digitize existing GS and literature data to	Field laboratory sites in environmentally sensitive areas	Med	Med	á	Jse existing infrastructure and non-invasive sampling and testing techniques
			•	rovide preliminary estimates	External Factor Risks:				
			d	nd update data when available	An operator becomes	Low	Med		Coordinate with backup
Injection test failure due to a well integrity	Low	Med	tl	lentify analogous wells within ne field operated by the same ompany	unavailable to facilitate data collection and testing in the field laboratory				operators at other suitable ield laboratory sites

Appendix: Benefit to the program

- Goal: The Storage Infrastructure Technology Area research effort is carrying out regional characterization and small- and large-scale field projects to demonstrate that different storage types in various formation classes, distributed over different geographic regions, both onshore and offshore, have the capability to permanently store CO₂ and provide the basis for commercial-scale CO₂ projects. This, working together with the two other research areas, address significant technical challenges in order to meet program goals that support the scale-up and widespread deployment of CCS.
- Benefits Statement: This research will potentially demonstrate CO₂-EOR and associated storage as an economically feasible option for smallmiddle size operators in the Illinois Basin and drive demand for CO₂ and investment in infrastructure.

Appendix: Project Overview Goals


DOE Program

- ROZs:- formation, characterization, and associated storage in conjunction with EOR
- Co-optimizing CO₂-EOR with associated storage in storage complexes that have stacked reservoirs

Stacked ROZ Fairways in ILB Geo-Laboratory

- Identify and characterize primarily siliciclastic ROZs and quantify the CO₂-EOR and associated storage resource using data collected and test results from greenfield and brownfield field laboratory sites
- Design economic development strategies to co-optimize CO₂-EOR and associated storage in stacked storage complexes using reservoir simulations calibrated to field laboratory test results

Appendix: Organization chart

Appendix: Gantt chart

Task Names		udge	t Pe	riod 1		Budget Period 2													Budget Period 3 21 2022 2023																	
	2019)20				2021									2022									
		Mar A	ar Apr May Jur				p Oct		Dec Ja				May Jun J				Dot Nov Dec					un Jul		iep Oc		lec Jar			ar Apr May					Dec		
	Q1		Q	2	0	23		Q4		QS		Q	6	0	27		Q8		Q9		Q10		Q11		Q12		Q13		Q14		Q1	5	Q16	G		
1.0 - Project Management and Planning																																				
Project Management																																				
Complete Project Management Plan	14																																			
Kick off Meeting	M																																			
Document Project Results																																				
2.0 – Screening and Selection of ILB ROZs for Resource Assessment																																				
2.1 - Synthesize ILB data for basin-scale ROZ characterization																																				
2.2 - Analyze ILB and operator data at greenfield and brownfield field laboratory sites																																				
23 - Identify analogous basins																																				
24 - Selection of ILB geologic formations to study for basin resource assessment																																				
3.0 – Illinois Basin ROZ Resource Assessment																																				
31 - Characterize siliciclastic ROZ fairways																																				
32 - Characterize overlying seals within the ROZ fairways																																				
33 - Model oil source and migration into ROZ fairways																																				
34 - Create maps of Individual ROZ fairways																																				
4.0 – Greenfield Field Laboratory: Stacked ROZ Storage Complex																																				
4.1 - Develop conceptual geologic model of ROZs at the lab site																																				
4.2 - Develop geocellular models based on the conceptual model																																				
4.3 - Design and implementation of pressure transient test and an injection test										//////																										
4.4 - Complete core, Iluid, log, and pressure transient analyses													/////																							
4.5 - Calibrate reservoir models to field laboratory data																																				
4.6 - Develop injection strategies to maximize storage, EOR, and net present value																																				
Finalize plan for data collection and testing at greenfield site														14																						
5.0 – Brownfield Field Laboratory: Stacked ROZs and Conventional Reserve	oir Sto	rage	Com	plez																																
5.1 - Develop conceptual geologic model of stacked ROZs and conventional reservoirs at st	le																																			
5.2 - Develop geocellular models based on the conceptual model																																				
5.3 - Design coving, Ruid sampling, pressure transient testing and logging program																																				
54 - Complete core, Ruid, log, and pressure transient analyses										//////																										
5.5 - Calibrate reservoir models to the geocellular model using the field laboratory data																																				
56 - Develop injection strategies to maximize storage, EOR, and net present value																																				
Finalize plan for data collection and testing at brownfield site												м																								
Complete testing of fluid and core samples of target CD2 reservoiors from field laboratory si	ites																		n	1																
6.0 – Co-optimization, LCA, and Classification of COz-EOR and Storage Re	sourc	es in	Stac	ked Re	servo	irs																														
6.1 - Identify economic development strategies of greenfield stacked reservoirs																																				
6.2 - Identify economic development strategies of brownfield stacked reservoirs																																				
6.3 - Perform LCA on brownfield and greenfield developments with potential ILB CO 1 source	ces																																			
64 - Estimate and classify CO ; storage and CO ; -EOR for the ILB using storage efficience	oy I																																			
6.5 - Complete fairway map of stacked ROZs, conventional reservoirs, and seals																																				
Complete strategies for co-optimization of CD2-EDR in stacked reservoirs																										M										
Complete Fairway maps													-									_											M			