

SMART-CS Initiative

<u>Science-informed Machine Learning to Accelerate</u> <u>Real Time (SMART) Decisions in Subsurface Applications</u>

Task 5 Team

- Bicheng Yan
- Bailian Chen
- Dylan Harp

Kayla Kroll

- Thomas McGuire
- Ryan Klapperich
- Todd Jiang
- Cody Williamson

- Parisa Shokouhi
- Luis Ayala
- Daniel Kifer
- Vikas Kumar
- Jonathan Garcez
- Kien Tran

- Tayo Omosebi
- Matt Reagan
- Curt Oldenburg

- Seyyed Hosseini
- Alex Sun

- Diana Bacon
- Alex Hanna

- Derek Vikara
- Anna Wendt
- Dave Morgan
- Don Remson
- Chung Yan-Shih
- Luciane Cunha
- Kelly Rose

- Jennifer Bauer
- Patrick Wingo
- Mackenzie
 Mark-Moser
- Yash Kumar
- Travis Warner
- Xiongjun Wu

- Srikanta Mishra
- Luan Lin
- Brandon Hill
- Michael Riedl

- Wei Jia
- Carlos Oroza
- Nathan Moodie
- Ryan Johnson

- Hongkyu Yoon
- Joseph Hogge
- Hector Mendoza

Task 5 Motivation

Can we rapidly develop experience among CCS stakeholders to facilitate rapid & safe deployment of large-scale geologic CO₂ storage?

<u>Vision:</u> Enable a Virtual Learning Environment (VLE) for exploring and testing strategies to optimize reservoir development, management & monitoring prior to field activities

<u>Phase 1 Goal:</u> Demonstrate the proof-of-concept with a prototype

How can Task 5 help CCS decision-makers

	Decision Maker	Decision to Be Made	Current Approach to Decision	How might SMART change this decision? And, how would this new approach improve the decision?			
Permitting	Regulator—State, Federal in Charge of Permitting	Will the proposed AOR and monitoring plan be sufficient?	Assess AOR and monitoring requirements based on information provided in permit application	Regulators can use VLE to gain and improve understanding of AOR and effective monitoring through exploring multiple, relevant scenarios in significantly shorter time			
Site Development	Engineer—Storage Operation	How should the field be developed relative to injection wells?	Numerical reservoir simulations coupled with field injection tests	Engineers can use VLE to rapidly test different strategies for optimal reservoir management by exploring multiple, relevant scenarios			
	Engineer—Storage Operation	How should the field and infrastructure be developed relative to brine extraction?	Numerical reservoir simulations coupled with field production tests				
Post Closure	Engineer—Storage Operation	When/where/how should I monitor to ensure there is no leak?	Monitoring observations during site- operations coupled with predictions of post-injection site behavior with reservoir models (validated)	Engineers can use VLE to efficiently test effectiveness of different post-injection monitoring strategies (when, where, what) prior to site operations in significantly shorter time			

Interactive virtual learning platforms need fast, predictive models

Fast, predictive models can be developed using novel machine-learning based methods

Our Approach

Our approach uses synthetic training data to develop machine learning based models

Numerical reservoir simulation of active reservoir management:

- 30 years of injection/extraction and up to 50 years of post-injection CS performance
- Fixed number of injection/extraction wells

Geological uncertainty

Multiple depositional environments / res. Sites

uncertainty

Heterogeneous porosity/permeability Variable cumulative CO₂ injection (up to **Operational** 50 million tons)

> injection allocation among Variable injectors

Use of high-fidelity reservoir simulators provide the needed science-basis

We have explored multiple machine learning approaches

- Approaches that can effectively capture time & space-dependent evolution of reservoir response:
 - Extensive literature search to identify appropriate approaches
- Applicability of approaches tested using 2D and 3D small-scale test problems of varying complexities:
 - Over 16 different models developed by team members
- Workflow for field-scale ML model dev was defined
 - A Browser-based test suite to facilitate ML model intercomparison

A prototype interactive platform has been developed with ML-based fast, predictive models

- Identified requirements for interactive platform:
 - Inputs
 - Predictions
 - Performance
 - Analysis capabilities
- Proof-of-concept of the platform was successfully tested with ML-based model for 3D small-scale test problem

Select Reservoir, Forecasting Model, and Input Parameters

Task Management

Sub-task	Description	Sub-task Lead
5.2.1	Develop Specifications for Platform	Hongkyu Yoon (SNL)
5.2.2	Identify Candidate Phase 2 Reservoirs	Tom McGuire (EERC)
5.2.3	Define ML Model Training Workflows	Alex Sun (UT-BEG)
5.2.4	Synthetic Data Generation	Luis Ayala (PSU)
5.2.5	ML Forecasting Model Development	Seyyed Hosseini (UT-BEG)
5.2.6	Develop Alpha Version of Platform	Alex Hanna (PNNL)

Field Sites

Criteria for reservoir models selection

- 1. Capability to store up to 50 million tons of CO_2 over 50 years (injection + post injection periods)
- 2. Variety of geological depositional settings
- 3. Public availability and accessibility of multiple geological realizations to capture uncertainty
- 4. Preference to models created in previous DOE funded projects

Selected reservoir Models

- High Island 24L (offshore Gulf of Mexico) Fluvial depositional environment
- 2 CarbonSAFE Utah Eolian depositional environment
- 3 SACROC Carbonate Reef depositional environment

SACROC Example

SACROC Northern Platform

The Scurry Area Canyon Reef Operators Committee Unit

- CO₂-EOR since 1972
- For Task 5 purpose target reservoir approximated as a saline aquifer

Reservoir simulations

- Reservoir model originally developed by Southwest Regional Partnership
 - o CMG-GEM
 - o 13600 cells (34 × 16 × 25)
- Scoping simulations performed to determine optimal net CO₂ storage
 - Ensure industrial scale storage
 - Optimal net capacity achieved with 3 injectors and 2 producers
- Iterative approach used to ensure that the underlying physics was honored
 - o Bottom-hole-pressure response at the injectors
 - Iterated with boundary conditions and local-gridrefinement
- Average simulation run time: ~ 4 hours/run

Net CO2 Storage in Coarse SACROC Model (MMT)											
Producers											
4				22.7							
3			22.5	22.9							
2		15.6	22.5	22.7							
1	12.4	13.2	15.8	16.0							
0	6.1	6.1	6.1	6.1							
	1	2	3	4	Injectors						

Multiple property realizations to account for geological uncertainties

3 porosity-permeability realizations: P10, P50, P90

Simulation case matrix

Variables:

- Injection amount
- Injection allocation among wells
- k and phi values

81 training cases

9 testing cases

																		,
- [I1 & I2 & I3			l1 & l2					I1 & I3					12 & 13				
	Injection			Injection				Injection				Injection						
	Allocation	33/33/33	└	Allocation	50/50			Allocation	50/50			Allocation	ocation 5		50/50			
	Total CO2	k-phi p10 p50 p90		Total CO2	p10	k-phi p50	p90		Total CO2	n10	k-phi	i p90		Total CO2	n10	k-phi	p90	
	22.4			Injection (MMT) 22.4		1	33		22.4		μ30	p30		22.4	pio	pso	μ50	- 1
ľ	11.2			11.2					11.2		37	38 3	9	11.2	4	1	41	42
- 1	5.6			5.6					5.6	- 6 -	46	47 4	3	5.6	4		50	51
_	Injection Allocation	60/20/20		Injection Allocation		90/10			Injection Allocation		90/10	0		Injection Allocation		90/10		
	Total CO2	k-phi		Total CO2	k-phi			Total CO2	k-phi			Total CO2	k-phi					
اما	Injection (MMT)				p10		p90		Injection (MMT)	p10	p50	p90		Injection (MMT)	p10	p50	p90	
lsŀ	22.4			22.4	-	-	-		22.4	-	-	-		22.4	-	-	-	
	11.2	13 14 15		11.2	52	53	54		11.2		58	59 6)	11.2	6		62	63
	5.6	22 23 24	4'	5.6	64	65	66		5.6		70	71 8 7	2	5.6	7.	3	74	75
	Injection Allocation	20/60/20		Injection Allocation		10/90			Injection Allocation		10/9			Injection Allocation		10/90		
	Total CO2	k-phi	$\vdash \vdash'$	Total CO2		k-phi			Total CO2		k-phi			Total CO2		k-phi	1	
	Injection (MMT)		$\vdash \vdash$		-	p50	p90		Injection (MMT)	1	p50	p90		Injection (MMT)	p10	p50	p90	
ŀ	22.4		-	22.4		- 56	- 57		22.4			-		22.4	-	-	-	
ŀ	11.2 5.6		-	11.2 5.6		56 68			11.2 5.6		76	77 7:	2	11.2 5.6	- 7:	-	80	81
	5.0	25 20 27	=	5.0	07	00	03		5.0		76	//	•	5.0	,	9	80	01
	Injection Allocation	20/20/60																
	Total CO2	k-phi	\leftarrow										-					
	Injection (MMT)		\vdash										-					
S	22.4 11.2	19 20 21	_															
ŀ	5.6	28 29 30								-							-	

Example results – Pressure and saturation distributions at the end of injection in one of the model layers for one simulation run

3 porosity-permeability realizations: P10, P50, P90

Machine learning based model development

- Results of reservoir simulations converted in formats appropriate for ML
 - Numpy format
 - New conversion script developed
 - Converted output size ~ 0.4 GB/run
- Input data for ML-models included
 - Space-dependent permeability, porosity
 - Locations & time-dependent injection rates for 3 injectors
 - Time & space dependent pressure & saturation
 - Locations & time-dependent production rates for 2 producers

Six different ML approaches were applied								
ML-Approach	Team							
Fourier Neural Operator (FNO)	LANL							
Autoencoder + Multilayer Perceptron (Pressure & Saturation)	NETL-SSAE							
Autoencoder + Long Short Term Memory (Water Production)								
Long Short Term Memory	NETL-GES							
Pix2Pix	PNNL							
CNN-LSTM-DNN (Pressure & Saturation)	CALL							
CNN-LSTM (Water Production)	SNL							
AU-Net	UT-BEG							

ML-based models – pressure predictions for test cases

ML-based models – saturation predictions for test cases

ML-based models – production rate predictions for test cases

Combined Results

We have successfully developed fast, predictive models for three reservoirs

- 250 reservoir simulation runs for 3 reservoirs:
 - CarbonSAFE: 40 runs
 - SACROC: 90 runs
 - Gulf of Mexico: 120 runs
- Multiple teams applied different machine-learning approaches
 - CarbonSAFE 4 models
 - SACROC 7 models
 - Gulf of Mexico 4 models
- ML-based models have high accuracy and good speed-up (10x – 5000x) compared to physics-based simulators

			Ве	est RMSE Achieve		~Speed-up		
Reservoir Model	Institution	Model Reported	Pressure (psi)	Saturation	Water Production Rate (bbl/day)	Forecast Time (secs)	relative to physics-based simulator	
	UTBEG	CNN/MLP	2.06	0.0053	13.86	5	2000X	
Gulf of	Battelle	GNN (multi)	296.62	0.0444	N/A	204	50X	
Mexico		MLP	0.16	0.0068	6.5	165	60X	
	PSU	LSTM	0.12	0.0429	9.09	190	50X	
	NETL	LSTM	26.70	0.0064	36.86	1.15	5000X	
CARRONGAFE	UU	MLP	20.50	0.0350	20.8	800	10X	
CARBONSAFE	LBNL	Model1	36.17	0.0105	N/A	131	50X	
	SNL	CNN/LSTM	2.655	0.0006	3.59	93	60X	
	LANL	FNO	4.94	0.0296	99.5	9.54	250X	
	NIETI CCAE	MLP	22.77	0.0350	90	1.59	1500X	
	NETL-SSAE	LSTM	34.50	0.0390	52.39	1.24	2000X	
SACROC	NETL-GES	LSTM	22.4	0.0280	121.83	0.48	5000X	
	PNNL	GAN	12.14	0.0295	221.59	0.98	2500X	
	SNL	CNN/LSTM	11.17	0.0358	245.24	2.17	400X	
	UTBEG	U-NET	78.76	0.1000	628.98	6.9	400X	

Future Work

Future work in Phase I

Select Reservoir, Forecasting Model, and Input Parameters

- Perform detailed comparison of ML-based models
 - Test speed-ups using common computational platform
- Complete incorporation of MLbased models in the VLE and demonstrate its utility
- Assess applicability of ML approaches for Phase II

Questions?

Thank you!

{insert email address}

