Using SmartParse NLP Tools to Develop a Living Database for Carbon Storage Data

Michael Sabbatino and Paige Morkner
NETL Support Contractor
Research Innovation Center

NETL Carbon Storage Virtual Meeting
August 5, 2021
Disclaimer

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Michael Sabbatino1,2, Paige Morkner1,2, Jennifer Bauer1, Kelly Rose1

1National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR, 97321 USA

2NETL Support Contractor, 1450 Queen Avenue SW, Albany, OR, 97321, USA

3NETL Support Contractor, 3610 Collins Ferry Rd., Morgantown, WV, 26505, USA
Research is data-driven

- Millions of dollars of research and data are available from carbon storage efforts.
- How can we preserve and efficiently access those resources to drive the next generation of R&D?

Address the needs of the community through AI/ML enhanced methods via DOE’s virtual data library and laboratory, EDX.

Employing “smart” search tools to include open resources.

Collect
Move & Store
Explore & Transform
Aggregate & Label
Learn & Optimize
Inform

EDX
Energy Data Exchange

Millions of attributes

Millions of attributes

Billions of attributes

Global Oil & Gas Feature Database

Machine Learning Web Search

WWW

Millions of attributes

Number of features per 2.5 km² area

U.S. DEPARTMENT OF ENERGY

4

OFFICE R&D
Supporting the whole life cycle of carbon storage data

Collection
- SmartSearch
- Expert-driven research
- EDX submissions

Metadata development and capture
- Cataloging
- ReadMe file development
- Natural language processing for keywords, topic modeling, geographic association

Quality Assessment
- Data ranking
- Data assessment method scoring

Data Organization and publishing
- Private workspaces
- Groups
- Submission packaging
- GeoCube data integration
Using AI/ML Tools for CS Data Curation

Challenge: Making available data discoverable, searchable, and easy to reuse

Solutions:

- **Open-source data scraping efforts**
 - **Cataloging for metadata extraction** and preservation
 - **Geographic database development** to make searches easier (GeoCube)

- **Natural language processing** for text-based resource classification, organization, keyword identification (metadata building) and geographic association (for searchability)

- **SmartParse NLP** has integrations with New API for EDX

- **ML image object recognition** and data extraction
Types of Carbon Storage Data

Spatial data:
- Shapefiles (field, basin, regional scale)
- Datasets
- Models

Text-based Data
- Documents
- Publications
- Power points
- Memos
- Posters

Other types of data:
- Tools
- Applications
- APIs
- LivingDatabase

Image Extraction:
- Documents
- Presentations
- Maps
- Posters

Feeding the data hippo!
Living Database

• Store and Share Data in a Structured Secure Database Environment
 • Reduce Redundant Acquisition
 • Direct Data Access (not file based storage)
 • Consistent Data with Staff Turnover
 • Enhanced Collaboration

• Curation of data and knowledge

• Allows Direct Analysis from Database

• Available On Research network and Watt ML Cluster
Data Cleaning for ML, AI and Spatial Analysis

• Use Python scripts to automate data cleaning and help rapidly add structure, labels and metadata for datasets

• Metadata development for open carbon storage database
 • Use of ArcREST data, geographic location, and attribute table to develop metadata for layers in Geocube

• Link to EDX to capture additional metadata for datasets
Latent Dirichlet allocation (LDA) model based on corpus of 2071 text-based documents

- Topic names assigned by subject-matter experts
- Each document is classified by % of each topic it’s associated with
- Each document has 50+ keywords identified and can be associated metadata on EDX
- Parse geographic location to associate with each document – when possible

Unsupervised ML for Document Classification
Machine Learning Image Data Extraction

• Object Detection Model Development Process
 • Use transfer learning to train object detection model for specific image and data types
 • Detect Graphs, Diagrams, Photos, Maps, and Tables
 • Image Labeling and process Developed with help from Mickey Leland Energy Fellowship

Images and Tables Targeted for Data for Extraction
Machine Learning Data Extraction

Utilize Object Identification ML Models to Extract Additional Data
Lessons Learned

• Machine Learning, Artificial Intelligence and Natural Language processing are Difficult
 • Whatever happened to Watson?

• Lack of Labeled Training Data
 • Training data is time consuming to develop and can be costly

• Data availability is limited with Living Database
 • Currently deployed on Research network
 • The database would improve if deployed on a cloud service or other shared environment

What Ever Happened to IBM’s Watson?

IBM’s artificial intelligence was supposed to transform industries and generate riches for the company. Neither has panned out. Now, IBM has settled on a humbler vision for Watson.

Synergy Opportunities

• Collaborative cross project technology
• Use material same NLP tech
• Using other NLP Models Louvian Community Detection
Supporting Data Collection, Curation & Analysis in Other Areas

Data mining, including…

Test results

Move & Convert…

Images and Graphs

Measurements

Actual and predicted creep rupture time using the Gradient Boosted Regression ML Algorithm

Evaluating machine learning models to:
- address data gaps
- identify key features in lifetime behavior of the alloy
Results: Spatio-temporal trends in CS data

Bringing together NatCarb, NRAP catalog and the Carbon Storage Open Database

CCS Projects Datasets Cataloged
1. Big Sky Validation Phase - Wallula Basalt Pilot Project
2. CAMi - Field Research Station
3. CarbonSAFE – Wyoming
4. Citronelle (SECARB)
5. Decatur
6. Edwards Aquifer
7. Farnsworth - Anadarko Basin
8. FutureGen
9. High Plains Aquifer
10. Kimberlina (WESTCARB)
11. Appalachian Basin Test (MRCSP)
12. Cincinnati Arch Test (MRCSP)
13. Williston Basin Oil Field Test (PCOR)
14. Scurry Area Canyon Reef Operations
15. Cranfield Site (SECARB)
16. Central Appalachian Basin Test (SECARB)

Results: Natural Language processing

Keywords and geographic associations

- Produced a **9 topic LDA model** – grouping similar papers
- Produced **keywords** associated with resources
- Geographic location recognition
- Integration into EDX through

![NETL SmartParse](image)

![spaCy](image)

Field Injection tests and monitoring

Site screening and modeling

Groundwater aquifer and target reservoir classification

Petrophysical Analysis (welllog data)

Gas and Pore Water Analysis

Resource Production

Geochemistry

Environmental Carbon Cycling

RCSP documents

Number of documents with at least 1% topic assignment
Results: Data Quality assessment method development and spatial trends in CS data quality

- 5-point data quality assessment method developed
- Quality based on completeness, accuracy, usability, and authority of source
- Applicable to many subsurface data sets and model output data sets
- Combined with CSIL can be used to analyze data quality spatially
- Manuscript outlining method in prep
Summary

FE and Carbon Storage program investments into data curation and management has led to the development of AI/ML tools and the preservation of millions of dollars of research products which benefits ongoing and future research. This has led to:

- A better understanding of CS relevant open- data density and data quality throughout US and Canada
- Improved access through the integration of CS data resources on EDX into GeoCube, SmartSearch and SmartParse (EDX version of NLP tools presented here) for further searchability with spatial searches and keyword searches
 - Updates to GeoCube for enhanced spatial searchability and integration of modeling tools to come
- EDX AI/ML data discovery, labeling, integration tool developments trained to support Carbon Storage, SMART-CS, and NRAP
 - Deployment of AI/ML algorithms to allow on-demand data discovery and integration, ready-made for each end-user needs
Next Steps

Carbon Storage program investments into data curation and management has led to the development of AI/ML tools and the preservation of millions of dollars of research products which benefits ongoing and future research. This has led to:

- Continue collecting and adding data to EDX, Geocube, and LivingDatabase
- Develop additional integrations between SmartSearch, SmartParse, and EDX
- Improve ML models and NLP analysis utilizing additional libraries, developing more training data, and applications
- Share and expand technology and data resources across NETL projects to improve and expand data curation
Thank you!
Appendix

– These slides will not be discussed during the presentation, but are mandatory.
Benefit to the Program

- Task 27 supports the development of data, materials, maps, analyses, and figures for the Carbon Storage Atlas, Natcarb Viewer, and Natcarb database. This includes release of new data insights to the GCS community, through the sixth edition of the Carbon Storage Atlas, and through bi-annual updates to the Natcarb Viewer and Natcarb database.

- Task 28 focuses on addressing CS R&D data curation challenges associated with ingesting, describing, and curating data products from DOE FE to ensure enduring access and more efficient utilization of those resources using AI/ML enhanced approaches to support future CS R&D. Ultimately, this effort will result in tools, data resources, and virtual capabilities for the CSP and community to facilitate efficient CS data discovery, integration, and curation using NETL’s EDX.

- Use of EDX and development of tools to support the collection, curation, organization, labeling, and publishing large quantities of data for carbon storage. Whether laboratory, field, or computational, CS R&D is both a producer and consumer of data resources (datasets, tools, models, etc.). However, while the volume of open, online data is increasing exponentially, scientists struggle to find, access, and make operable data products from previous R&D projects due to insufficient and/or burdensome online data curation tools and outdated techniques.
Project Overview

Goals and Objectives

– Funded by DOE as part of Carbon Storage DE FE-1022465, Tasks 27 and 28
– RSS Contract and ITSS contract researchers
– Ongoing performance dates 2018-2022
– Project Participants
 • PI: Kelly Rose
 • LRST: Paige Morkner, Michael Sabbatino, Andrew Bean, Lucy Romeo, Patrick Wingo
 • ITSS: Chad Rowan, TJ Jones, Aaron Barkhurst, Vic Baker
Organization Chart
Carbon Storage Data

Project Partners
- DOE
- NETL

Lead Organization
NETL

Principal Investigators
Kelly Rose, Jennifer Bauer

Task 27.0
Next Generation Development, Deployment, and Modernization of Database, Tools, Online Viewer, and Atlas

Lead: Jennifer Bauer

Contractors: Paige Morkner, Michael Sabbatino, Patrick Wingo, Andrew Bean, TJ Jones, Aaron Barkhurst, other Matric Software Engineers and Developers

Task 28
Curation of Carbon Storage R&D Products Through Advanced Data Computing Solutions

Lead: Jennifer Bauer

Contractors: Chad Rowan, Michael Sabbatino, Paige Morkner, Andrew Bean, Lucy Romeo, TJ Jones, Aaron Barkhurst, Vic Baker, Other Matric Software Engineers and Developers
Task 28.0: Project Timeline Overview

Curation of Carbon Storage R&D Products Through Advanced Data Computing Solutions (PIs: Michael Sabbatino, Jennifer Bauer)

Key Accomplishments/Deliverables

- 2018–Present, Addition of Big Sky, PCOR, Mdw est CS Partnership, SECARB, and MGSC data and resources on EDX, for a combined total of 3,037 and 1.64 TB of data.
- 2018–2020, Big data computing cluster, Watt, set up and work to directly link EDX with these computing capabilities.
- 2019–2021, Test and validate SmartSearch for use with commercial cloud & EDX to evaluate capabilities to assimilate relevant CS data; including work as part of an NDA with Google and collaboration with DOE-HQ OOO.
- 2020–2021, Develop Living Database logic to host and store large volumes of CS data.
- 2021–2022, Deploy beta instance of Living Database front end and dashboard tools.
- 2022, Addition of any final RCSP and other CS resources to EDX.

Value Delivered

- Collecting, curating, and cataloging data from all regional CS partnerships and open-sources.
- Developing capabilities to query curated data.
- Delivering EDX’s public-private capabilities, including growing access to its big data computing cluster and Amazon Web Services (AWS) cloud services, seek to facilitate more effective research for DOE-FE subsurface scientists.
- Pairing EDX hosted CS data resources and products with other online capabilities, data, custom ML algorithms and capabilities to enhance user experience and provide research teams with the resources needed to make subsurface energy research more efficient, reduce redundancy, and drive innovation.

* Task 28.0 is integrating data into an existing tool with no development of a technology. Therefore, no TRL is assigned.
Bibliography

– List peer reviewed publications generated from the project per the format of the examples below.

