Modeling the MT and CSEM Response to a scCO2 Plume at the Kemper CarbonSAFE Site

Richard Hammack
NETL/Geological and Environmental Systems

Motivation

- Post-Injection Monitoring of Commercial
 Carbon Storage Sites (large areas, long duration)
- Limited tools
 - Monitoring wells Poor spatial resolution
 - Repeat 3-D seismic Poor temporal resolution
- Improvements
 - Lower Cost
 - Faster
 - Less Landowner Impact
 - AI Friendly

Airborne Surveys

Airborne Monitoring of Carbon Storage Sites

2009 AGU – Geotech presents modeling results that suggest helicopter magnetotellurics (MT) can detect CO₂/brine boundary at 800 m depth

Approach

- Forward Model the Response of an Airborne Magnetic Sensor
 - 1. Magnetotellurics (MT)
 - 2. Controlled Source Electromagnetics (CSEM)
 - 3. Charged Well Casing Electromagnetics (CWCEM)

Approach

- Forward Model the Response of an Airborne Magnetic Sensor to Two Carbon Storage Scenarios:
 - 1. Hypothetical model used by Geotech
 - 2. Kemper CarbonSAFE

- Reproduce Geotech results
 - Helicopter Magnetotelluric
 - Reservoir @ 800m depth
 - Tipper

Tipper:
$$H_z = TH = (T_{zx}, T_{zy}) \begin{pmatrix} H_x \\ H_y \end{pmatrix}$$

Geotech Model Confirmed!

Model Kemper CarbonSAFE Site

- Shallow Reservoir

Thick Reservoir

 Build Geoelectric Model for Kemper CarbonSAFE

Electromagnetic Techniques Modeled

 Conventional EM techniques measure both magnetic and electrical fields

Airborne 3-Component Magnetic Sensors

 Modeling the MT (Tipper) response using Kemper CarbonSAFE Geoelectric Model

 Modeling the CSEM response using Kemper CarbonSAFE Geoelectric Model

CSEM

 Modeling the CWCEM response using Kemper CarbonSAFE Geoelectric Model

- Near-Term Work
 - Modeling Downhole EM Sources
 - Baseline MT and CSEM Surveys at Kempton

Supracon SQUID Magnetometer

Accomplishments to Date

- Confirmed Geotech Modeling Results of 2009
- Prepared geoelectric models for Kemper CarbonSAFE
- Modeled MT "tipper" response for Kemper CarbonSAFE
- Modeled CSEM response for Kemper CarbonSAFE

Lessons Learned

 For CSEM, the transmitter should not be located directly over the CO₂ plume

Synergy Opportunities

- Kemper CarbonSAFE team
- Illinois CarbonSAFE team
- Enig Associates- development of downhole C-eBeam source

Project Summary

Key Findings

- MT can distinguish CO₂ vs. brine-filled pore space at 800 m depth
- MT tipper should be excellent for mapping the CO₂/brine interface at Kemper CarbonSAFE
- CSEM can map the CO₂ plume extent with multiple transmitter locations

Next Steps

- Ground MT and CSEM surveys at Kemper CarbonSAFE using SQUID magnetometer
- Modeling the surface magnetic response to downhole transmittersdetermine optimum transmitter depth WRT injection formation.

Appendix

 These slides will not be discussed during the presentation but are mandatory.

Benefit to the Program

- Program Goals Being Addressed
 - Insuring CO₂ storage permanence
- Program Benefits
 - Lowers the cost of post-injection monitoring at commercialscale CO₂ storage sites
 - Minimizes impact to surface landowners because surveys are done by aircraft-manned or drone
 - Method is sensitive to all CO₂ saturations; seismic is only sensitive to CO₂ concentration below 40%

Project Overview

Goals and Objectives

- Describe the project goals and objectives in the Statement of Project Objectives.
 - How the project goals and objectives relate to the program goals and objectives.
 - Identify the success criteria for determining if a goal or objective has been met. These generally are discrete metrics to assess the progress of the project and used as decision points throughout the project.

Gantt Chart

Bibliography

• <u>Publication in Conference Proceedings</u>:

 Kohnke, C., Li, Y., and R. Hammack, 2021, The Feasibility of MT tipper data to monitor CO₂ storage sites, Proceedings of the 2021 SEG Annual Meeting, Denver, CO, Sept 26-Oct 1, 2021.