DEVELOPING AND VALIDATING PRESSURE MANAGEMENT AND PLUME CONTROL STRATEGIES IN THE WILLISTON BASIN THROUGH A BRINE EXTRACTION AND STORAGE TEST (BEST) (FE0026160)

Carbon Management and Oil and Gas Research Project Review Meeting
August 5, 2021

Ryan Klapperich
Principal Geoscientist
This material is based on work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Award No. DE-FE0026160.
Background

- Project Overview
- Objectives
- Project Status
Objectives:

- Validate efficacy of brine extraction as a means of active reservoir management (ARM)
 - Applications that can enable the implementation and improve the operability of industrial carbon capture and storage (CCS) projects.
 - Manage injection performance and formation pressure.
 - Model, predict, monitor, and validate movement of fluids and pressure.
 - Provide data set to enable evaluation and design of ARM applications at compatible CCS sites.
 - Improve use and efficiency of geologic CO₂ storage resources

- Implement and operate a brine treatment technology development and test bed facility
 - Enable development of brine treatment technologies capable of treating high-total dissolved solids (TDS) brines associated with geologic CO₂ storage target.

Project Details:

- Phase II project: $22,573,604
 - DOE Share: $18,103,044
 - Cost Share: $4,470,560
 - Schlumberger: $3,050,000
 - CMG: $1,420,560
- Period of Performance: July 2016 – May 2022
SUCCESS CRITERIA

Validate efficacy of ARM applications to industrial CO\textsubscript{2} storage projects (through a field test).

Demonstrate the steps necessary to design and implement ARM for industrial CCS projects.

Enable development of water treatment technologies with application to treating high-TDS brines associated with geologic CO\textsubscript{2} storage targets.
GEOLOGIC CO$_2$ STORAGE
CONSIDERATIONS FOR INDUSTRIAL PROJECTS

- Buoyant fluid
- Large volumes = large footprint
- Access to pore space
 - Leasing, unitization/amalgamation, trespass
- Compliance with regulatory and incentive programs
- Assuring permanence for incentives or credits
 - Conformance and storage efficiency

Because of a host of technical, social, regulatory, environmental, and economic factors, brine disposal tends to be more accessible and generally quicker, easier, and less costly to implement compared to dedicated CO$_2$ storage.
TWO COMPLEMENTARY COMPONENTS

ARM Test
• Reduce stress on sealing formation
• Geosteer injected fluids
• Divert pressure from potential leakage pathways
• Reduce area of review (AOR)
• Improve injectivity, capacity, and storage efficiency
• Validate monitoring techniques and model performance

Brine Treatment Test Bed
• Alternate source of water
• Reduced disposal volumes
• Salable products for beneficial use

Illustration modified from Lawrence Livermore National Laboratory https://str.llnl.gov/Dec10/aines.html
THE SITE
Simulation

- Data Preprocessing
- Reservoir Modeling
- Injection Predictions
- Machine Learning (ML) Analysis
- ML Method, Workflow
- Response of Reservoir Pressure to Extraction Process
- Accomplishments to Date
ACCOMPLISHMENTS TO DATE

Designed and Implemented ARM Field Test (COMPLETE)
- Brine extraction well proximal to two saltwater injection wells.
- Deep water injection well to reinject extracted water (proxy for ARM at a CCS site).
- Acquired reservoir and well performance data over multimonth brine injection/extraction tests.
- Confirmed that a measurable pressure and injection response was achieved using brine extraction.

Geophysical Simulation and Modeling
- Calibrate and validate performance of Cedar Creek Anticline (CCA) ARM proxy models by integrating monitoring data.
- Evaluate efficacy of ARM strategies for varying operating and deployment scenarios relevant to geologic CO$_2$ storage.
- Completed preliminary modeling to ascertain the scale of impact that brine extraction can have on CCS performance with relation to positioning of extraction wells relative to injection wells and injection/extraction rates.

ML Analysis
- Developed a model based on ML to simulate reservoir pressure based on injection and extraction rates.
- Applied the ML model to predict reservoir pressure at various scenarios of operation.
- Validated results against field data.
TEST OPERATIONS AND MONITORING

• Extraction and interference testing completed.

• Field Implementation Plan:
 – Stage 1
 ♦ Start: June 13, 2019
 ♦ End: November 27, 2019

 – Stage 2
 ♦ Start: November 27, 2019
 ♦ End: July 7, 2021
RAW DATA PROCESSING FOR SIMULATION INPUT

Recorded SCADA data

Processed daily pressure/rate
Red line illustrates the history match results.

- Real-world sites introduce significant complexities to the data set. We observed regular well shut-ins and opening of the wells as well as changing fluid properties throughout the experimental duration.

- We were able to achieve a usable history match to explore predictive cases.
CO₂ INJECTION SIMULATION

- Use history-matched model to test initial CO₂ injection scenarios to evaluate how production wells can increase total storage capacity of CO₂ through ARM.
 - Used preliminary modeling to ascertain the scale of impact that brine extraction can have on CCS performance with relation to positioning of extraction wells relative to injection wells and injection/extraction rates.
 - Results inform a matrix of simulation cases to explore the impact of well position, injection/extraction rate, and various operational and development strategies relative to ARM applications to CCS.

- Influential parameters to bottomhole pressure responses:
 - Permeability near extraction and injection wells.
 - Offset injection wells outside the study area have an impact.
 - Appropriate permeability and volume modifiers and boundary conditions for subsequent case studies.
CO₂ INJECTION SIMULATION – TEST VARIABLES

- Injection rate equivalent of 1 MMt/yr.
 - Injected at reservoir conditions.
- Extraction ratios (volume extracted to volume injected) of 1:1, 3:4, 1:2, and 1:4.
- Simulated two injection wells with one extraction well.
 - Offset distance of extraction well for half-mile increments (0.5 miles to 2.5 miles).
 - Extraction well shuts-in when breakthrough is observed.
- 20 cases were evaluated.
The drop of the liquid production rate (blue line) represents the point where injected gas broke through to the extraction well.
- Extraction well was shut in.

At the breakthrough point (~10 years), the difference in injected gas is ~2.7 MMt.
- ~15% volume increase compared to the nonextraction base case.

At end of simulation (25 yr), difference grows to ~7.8 MMt.
- ~20% volume increase compared to the nonextraction base case.
MOTIVATION FOR USING ML

• Complex system of injection and extraction.
 – Dynamic and variable rates, pressures, and fluid densities observed throughout the course of the field tests.
 – Inherent noisiness of field data is challenging to evaluate and using traditional techniques.
• Power of ML methods in data mining and prediction.
 – Helps with automation and provides savings in data processing.
• Predicted reservoir pressure could be used to monitor reservoir response to brine/CO₂ injection.
ML ANALYSIS WORKFLOW

Data Preprocessing
- Raw Data
 (dependent variable: BHP; independent variables: injection and extraction rate)
- Outlier Treatment
- Smoothing
 (treat missing and irregular values)

Model Development
- Train Data
- Test Data
 (used to evaluate the power of the model)
- Model Development
 (XGBoost)
 (pressure is purely modeled by injection and extraction flow rate)

Application
- Model Deployment
 (make predictions of reservoir pressure)
- Pressure Management
 (predict various injection and extraction flow rates)

Critical Challenges. Practical Solutions.
XGBOOST MODEL PERFORMED WELL IN PREDICTING RESERVOIR PRESSURE

Modeling Evaluation

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-square</td>
<td>0.9204</td>
<td>0.9202</td>
</tr>
<tr>
<td>RMSE</td>
<td>46.71</td>
<td>31.14</td>
</tr>
<tr>
<td>MAE</td>
<td>46.80</td>
<td>31.17</td>
</tr>
</tbody>
</table>

- XGBoost model performed very well with both the training and test data sets.

Variable Importance Plot

- Reservoir pressure was more greatly influenced by injection than extraction.
The contour plot was created to model reservoir pressure response to different scenarios of injection and extraction operations.

- Higher injections always correspond to higher pressure.
 - E.g., pressure can increase ~200 psi when injection rate increased from 2000 to 5000 bbl/day.
- Under some conditions, extraction could decrease reservoir pressure (<100 psi).
Brine Treatment Test Bed

- Facility
- Accomplishments to Date
- Next Steps
NORTH DAKOTA BRINE TREATMENT FACILITY – WATFORD CITY, NORTH DAKOTA
BRINE TREATMENT TECHNOLOGY SELECTION AND TESTING

• Over 30 different technologies and providers of brine treatment/management technologies were solicited and reviewed for applicability to high-TDS brines.

• Technologies were reviewed and ranked according to selection criteria, including 1) project benefits (reduction of injection costs, etc.), 2) technology strengths (scientific soundness, readiness level), and 3) organizational strengths (IP, capability for further development, etc.).

• Four technologies were identified and recommended for pilot-scale demonstration.

• An inaugural demonstration of a mechanical vapor recompression (MVR) technology provided benchmark testing for comparison.
ACCOMPLISHMENTS TO DATE
BRINE TREATMENT DEVELOPMENT FACILITY

- Successfully tested a pilot-scale, skid-mounted MVR system provided by NETL for 2 weeks in August 2019.
 - Tested salinity ranges from 17,000 mg/L TDS up to 170,000 mg/L TDS.
 - Achieved brine concentration/rejection of 40%–60% and produced near-drinking water standard water.
 - Results of MVR will serve as a benchmark for future innovative technologies to be tested.
NEXT STEPS

- Four additional demonstrations to occur in late summer and fall 2021.

 - Demonstrations include a second, extended steady-state evaluation of the MVR technology and three other innovative technologies identified.

 ♦ MVR technology to acquire data under extended steady-state operation (August 2021)

 ♦ Internally heated supercritical water desalination technology (September 2021)

 ♦ Thermally assisted membrane distillation technology (October 2021)

 ♦ Zeolite-derived membrane technology (December 2021)
Summary

- Challenges
- Lesson Learned
- Synergies
CHALLENGES

SITE OPERATIONS

Stock Tank Repairs
- Stock tank cracked
- Stock tank repaired

Free Water Knockout (FWKO) Issues
- Water dump and pop-off valves damaged
- External electrical equipment

Electric motor upgrade

Hot Weather

HEAT!!
LESSONS LEARNED

Public–private partnership is key.

Adaptability.

Committed partners, leverage stakeholder experience.

Maintain an up-to-date risk register, mitigate risks where prudent, incorporate flexibility where possible, robust designs and contingency plans, be adaptive as conditions change.

Large field tests have elevated risks and dynamic conditions.

Risk, cost, and objectives must be managed together.

Field data should be expected to be complex; traditional strategies for data management and interpretation may not be sufficient.
Hypothesis – Coinjection of dissolved CO\textsubscript{2} into saltwater disposal (SWD) wells could accommodate meaningful quantities of geologic CO\textsubscript{2} storage with a significantly reduced risk profile that is easier to permit that could enable a distributed CO\textsubscript{2} storage model.

- Conduct screening-level techno-economic feasibility assessment.
- Compare **risk profile** of carbonated brine storage versus supercritical CO\textsubscript{2} injection.
- Leverage models and SWD operating knowledge obtained through North Dakota BEST.
- Reconnaissance-level assessment of barriers to implementation and recommendations for beneficial NRAP tool feature set.
GEOLOGIC HOMOGENIZATION CONDITIONING AND REUSE (GHCR)
SYNERGY

Leverage BEST field test to provide proof of concept of GHCR concept.

Traditional Approach

GHCR Approach

SUBTASK 3.2 – Produced Water Management Through Geologic Homogenization, Conditioning, and Reuse
DE-FE0024233
Facility can be readily adapted for use with alternate fluid compositions or treatment processes.

- Alternate water sources trucked and offloaded at site.
- Pretreatment and conditioning can be modified to replicate broader influent specifications.
- Blending of additives to replicate target fluid chemistries.
- Application of cascade technologies (e.g., power/thermal supply, pretreatment/conditioning...).
- On-site SWD and waste handling.
• Oil and gas fluid conditioning (e.g., emulsion breaking, corrosion, scale inhibitors, fluid compatibility testing, etc.)
• Produced water treatment
• Electric power generation wastewater treatment
• Industrial and municipal waste and water treatment
• Mineral resource recovery
• Agricultural water treatment
• Geologic conditioning and homogenization as a means of water pretreatment
• Benchmarking the economic and technical limits of water treatment technologies (e.g., MVR)
• Collaboration with other federal, state, or industry groups

NORTH DAKOTA BRINE TREATMENT FACILITY
POTENTIAL ADAPTATION FOR EXPANDED APPLICATION
PROJECT SUMMARY

• Key Findings:
 – The field trials showed injection is a greater contributor to reservoir pressure than extraction, but extraction can reduce reservoir pressure in certain scenarios.
 – Preliminary modeling suggests a 20% increase in storage potential could be achieved with comparable volumetric injection and extraction rates.
 ♦ Additional optimization strategies are being evaluated.
 – Experimental brine treatment technologies exist that are capable of treating the saline waters that are likely to be associated with CO$_2$ storage sites applying ARM. Additional technology development is needed to enable and produce commercialized solutions.

• Next Steps:
 – Evaluation of varying ARM implementation and optimization steps for CO$_2$ injection guided by preliminary results using the history-matched model.
 – Complete field trials of brine treatment technologies.
 – Project reporting and knowledge sharing.
BENEFITS TO THE PROGRAM

This project is expected to result in the development of engineering strategies/approaches to quantitatively effect changes in differential formation pressure and to monitor, predict, and manage differential pressure plume movement in the subsurface for future CO₂ saline storage projects. Additionally, the brine treatment technology evaluation is expected to provide valuable information on the ability to produce water for beneficial use. The results derived from implementation of the project will provide a significant contribution to the U.S. Department of Energy’s (DOE’s) Carbon Storage Program goals. Specifically, this project will support **Goals 1 and 2** by validating technologies that will improve reservoir storage efficiency, ensure containment effectiveness, and/or ensure storage permanence by controlling injected fluid plumes in a representative CO₂ storage target. Geologic characterization of the target horizons will provide fundamental data to improve storage coefficients related to the respective depositional environments investigated, directly contributing to **Goal 3**. In addition, this project will support **Goal 4** by producing information that will be useful for inclusion in DOE best practices manuals.
Task 1.0 – Project Management, Planning and Reporting

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 – Project Management</td>
<td>7/7/16</td>
<td>5/31/22</td>
</tr>
<tr>
<td>1.2 – Project Reporting</td>
<td>7/7/16</td>
<td>5/31/22</td>
</tr>
</tbody>
</table>

Task 2.0 – ARM Site Preparation

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 – ARM Permitting</td>
<td>7/7/16</td>
<td>3/31/18</td>
</tr>
<tr>
<td>2.2 – Well Installation</td>
<td>8/1/16</td>
<td>6/15/18</td>
</tr>
<tr>
<td>2.3 – Surface Infrastructure Installation</td>
<td>10/1/16</td>
<td>6/15/18</td>
</tr>
<tr>
<td>2.4 – Updated Site Characterization and Modeling</td>
<td>12/1/16</td>
<td>12/31/18</td>
</tr>
</tbody>
</table>

Task 3.0 – Test Bed Site Preparation

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 – Test Bed Facilities Permitting</td>
<td>7/7/16</td>
<td>3/31/18</td>
</tr>
<tr>
<td>3.2 – Test Bed Facility Installation</td>
<td>8/1/16</td>
<td>6/15/18</td>
</tr>
<tr>
<td>3.3 – Solicitation of Treatment Technologies</td>
<td>10/1/16</td>
<td>6/15/18</td>
</tr>
</tbody>
</table>

Task 4.0 – ARM Operations

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 – Injection/Extraction Testing</td>
<td>6/16/18</td>
<td>8/31/21</td>
</tr>
<tr>
<td>4.2 – MVA Implementation</td>
<td>6/16/18</td>
<td>8/31/21</td>
</tr>
<tr>
<td>4.3 – Model Updates/History Matching</td>
<td>6/16/18</td>
<td>8/31/21</td>
</tr>
</tbody>
</table>

Task 5.0 – Test Bed Treatment Operations

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 – Facility Shakedown/Training</td>
<td>6/16/18</td>
<td>5/30/19</td>
</tr>
<tr>
<td>5.2 – Long-Term Performance Evaluations</td>
<td>5/1/19</td>
<td>5/31/21</td>
</tr>
</tbody>
</table>

Task 6.0 – ARM Data Processing/Project Closeout

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 – ARM Site Decommissioning/Disposal</td>
<td>9/1/21</td>
<td>3/31/22</td>
</tr>
<tr>
<td>6.2 – Finalization of ARM Test Results</td>
<td>9/1/21</td>
<td>12/12/21</td>
</tr>
</tbody>
</table>

Task 7.0 – Test Bed Data Processing/Project Closeout

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 – Test Bed Decommissioning/Disposal</td>
<td>9/1/21</td>
<td>2/28/22</td>
</tr>
</tbody>
</table>

Task 8.0 – Test Bed Decommissioning/Disposition

<table>
<thead>
<tr>
<th>Task</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 – Test Bed Decommissioning/Disposition</td>
<td>9/1/21</td>
<td>2/28/22</td>
</tr>
</tbody>
</table>

Note: The contract modification for Phase II was fully executed on September 9, 2016.

Gantt Chart, Deliverables, and Milestones

- **Deliverables**
 - D1 – Updated PWP
 - D2 – Field Implementation Plan (FIP) Finalized
 - D3 – Water Treatment Technology Selection Process Summary
 - D4 – Preliminary Schedule of Technologies
 - D5 – Vol. 1 – ARM Engineering and Evaluation Summary
 - D6 – Vol. 2 – Technology Evaluation Report
 - D7 – Data Submission to EDX
 - D8 – Lessons Learned Document

- **Milestones (M)**
 - M1 – Project Kickoff Meeting
 - M2 – Permit to Drill Submitted
 - M3 – Water Treatment Test Bed Permit Received
 - M4 – Start Water Treatment Facilities Construction
 - M5 – Permit to Drill Received
 - M6 – Start Site Preparation
 - M7 – First Treatment Technology Selected
 - M8 – Wall Installation Complete
 - M9 – Surface Installation Complete
 - M10 – Water Treatment Facilities Complete

- **Budget Period (BP)**
 - BP1
 - BP2
 - BP3
 - BP4

- **Timeline**
 - Q1
 - Q2
 - Q3
 - Q4
 - Q5
 - Q6
 - Q7
 - Q8
 - Q9
 - Q10
 - Q11
 - Q12
 - Q13
 - Q14
 - Q15
 - Q16
 - Q17
 - Q18
 - Q19
 - Q20
 - Q21
 - Q22
 - Q23
 - Q24

Good line indicates the end of the 5-year program.

• Hamling, J.A., Klapperich, R.J., Jiang, T., Ge, J., and Bosshart, N.W., 2018, Field implementation plan (FIP) finalized—developing and validating pressure management and plume control strategies in the Williston Basin through a brine extraction and storage test (BEST): Phase II Task 2 Deliverable D2 for U.S. Department of Energy National Energy Technology Laboratory Cooperative Agreement No. DE-FE0026160, Grand Forks, North Dakota, Energy & Environmental Research Center, December.

