Novel Geochemical Signal Methodologies FWP-1022403

Alexandra Hakala

Research Physical Scientist, Research and Innovation Center

<u>**Project Team</u>**: Alexandra Hakala, James Gardiner, Burt Thomas, Christina Lopano, Mengling Stuckman, Brandon McAdams, Robert Dilmore, Mitchell Small, Jiaan Wang, Katherine Romanak, Rosemary Capo, Brian Stewart, Rebecca Matecha, Shikha Sharma, Wei Xiong</u>

> Carbon Management Research Project Review Meeting August 6, 2021

Need: Low-cost, easily implemented monitoring strategy for carbon storage reservoir leak detection

- Monitoring costs associated with CO₂ storage are projected to be **3 – 20%** of the operational costs of a geological carbon storage site.¹
- Injected chemical tracers are demonstrated to provide a lowcost and reliable option for monitoring and quantifying migration of CO₂ from the primary storage reservoir.²
- What if naturally-occurring chemical analytes could be used for low-cost, early detection of CO₂ and brine migration events?

.S. DEPARTMENT OF

ENERGY

Background Image Courtesy of Schlumberger Carbon Services

¹Calculated from values presented in Rubin et al., IJGHGC, 2015, 40, 378-400 ²Roberts et al., IJGHGC, 2017, 65, 218-234 Image copied from: https://www.netl.doe.gov/coal/carbonstorage/advanced-storage-r-d/monitoring-verificationaccounting-and-assessment

Geochemical Monitoring of Groundwater Impacts – Novel Geochemical Signal Methodologies Summary

NETL-RIC Advanced Storage (Task 21)

Prior Year Results (Tasks 20 & 21)

New Lab- and Field-Based Chemical Analysis

- Reduced analytical time and increased confidence in data from high-salinity bines = lower cost for monitoring
- Isotope techniques (Sr, Li, Ba, B)
- Metals by Ion Chromatography
- Direct field monitoring (CO₂, Fe, S)

ENERGY

Robust Field Data Sets

- Two CO₂-EOR sites with multiple geologic formations monitored (3y)
- Comprehensive statistical analysis to identify mixing trends
- Identified of major geochemical signals that will indicate CO₂ migration into shallower formations

Task 21 EY20 – 21 Focus

<u>Final Product:</u> Predictive Model for Geochemistry-Based Early Leak Detection

- Merge key geochemical reactions identified with statistical approach
- Use to develop low-cost monitoring strategies where chemistry can ID issues not detectable by other techniques

Opportunity 1: Leverage difference in chemistry between geologic formations to identify fluid mixing events

If chemical constituents from the storage reservoir are detected in an intermediate reservoir, or shallow groundwater aquifer, then a CO_2 or brine migration event may have occurred.

Original Condition: Distinct chemical composition between geologic units

Shallow Groundwater Aquifer

CO₂ Storage Reservoir

Migration Pathway

CO₂ or Brine Migration: Overlying geologic units show chemical signatures similar to primary storage reservoir that differ from the original condition.

Challenge: What if the major aqueous chemical signatures between formations are similar or influenced by multiple processes?

Opportunity 2: Leverage knowledge of CO₂-reservoir geochemical reactions to improve certainty of fluid source

If chemical signatures specific to CO_2 -impacted reservoir fluids are detected in overlying formations, then there is likelihood that a migration occurred.

CO₂ Reservoir Origin: CO₂ and brine are expected to carry chemical signatures associated with the reservoir, that are transferred to the receptor geologic formation.

Other Origin: Sudden changes in chemical composition in overlying geologic units do not carry reservoirspecific chemical signatures.

Opportunity 3: Leverage knowledge of geochemical reaction paths along different migration pathways to identify the source If chemical signatures specific to certain migration pathways (e.g., along the well, or via fractures in the seal) are known, then mitigation techniques specific to those pathways may be developed to ensure long-term storage permanence and environmental sustainability.

> **Migration along well:** CO_2 and brine are expected to carry chemical signatures associated with the **reservoir and well** that are transferred to the receptor geologic formation.

Migration across seal: CO₂ and brine are expected to carry chemical signatures associated with the **reservoir and seal** that are transferred to the receptor geologic formation.

6

Early-stage geochemistry-based leak detection

Characterizing what a geochemical signal looks like under CO₂/brine leakage scenarios

 Characterize expected signals of brine migration between geologic formations – mixing models developed with field data

2. Identify which combinations of chemical signatures indicate CO₂ migration – geochemical-statistical model to identify the probability that a leak occurred using common geochemical parameters

Approaches for geochemistry-based leak detection

 Identify which chemical tracers can: A) be reliably identified and measured in field samples with techniques of varied time and cost, and B) can be used to identify major processes that may occur during CO₂ and brine leakage

Completed

Application of Field Data from Permian Basin CO₂-EOR Sites to Quantify Operational Baseline and Fluid Mixing

Completed

Development of Reaction Matrix for Testing with Bayesian Belief Network Statistical Modeling

	Α	В	с			F
	Reaction Pathways	Base Case Brine	Base Case Brine + CO ₂	Mechanisms Underlying Responses	Parameters related to Leakage Pathway	Confidence in Detecting Change
1	Dolomite (1° res.) → Wellbore migration	Equilibrium with formation	CO ₂ Induced Water-Rock Rxns	-Carbonate dissolution -Cement dissolution	·Dissolved ions [Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Fe ²⁺] ·Barium and strontium isotopes	·TBD using Bayesian Belief Network
2	Dolomite (1° res.) \rightarrow Shale (seal) \rightarrow Overlying Units	Box B1 + Shale Rxns	CO ₂ Induced Water-Rock Rxns	·Carbonate dissolution ·Shale dissolution	·Dissolved ions [Ca ²⁺ , Mg ²⁺ , Sr ²⁺] ·Strontium isotopes	·TBD using Bayesian Belief Network
3	Sandstone (1° res.) → Wellbore migration	Equilibrium with formation	CO ₂ Induced Water-Rock Rxns	·Silica dissolution ·Cement dissolution	-Dissolved ions [Na ⁺ , Ca ²⁺ , Mg ²⁺ , Fe ²⁺] -Barium strontium isotopes	·TBD using Bayesian Belief Network
4	Sandstone (1° res.) → Shale (seal) → Overlying Units	Box B3 + Shale Rxns	CO ₂ Induced Water-Rock Rxns	·Carbonate dissolution ·Shale dissolution	·Dissolved ions [Na ⁺ , Ca ²⁺ , Mg ²⁺ , Fe ²⁺] ·Strontium isotopes	·TBD using Bayesian Belief Network

In Progress

Development of Bayesian Belief Network Statistical Model for Expected Signals from Migration Event

Monitoring geochemical changes at a CO₂-EOR site in West Texas, USA

East Seminole Field Data

Opportunity to:

(1) Observe CO₂ induced changes in produced water

(2) Monitor overlying groundwaters for produced water intrusion

Potential Implications/Impact

(1) Understand CO₂ water-rock-interactions

(2) Develop applications of geochemical tools for monitoring, measurement, and verification

Gardiner et al., 2020, App. Geochem.

Major sampling zones for East Seminole field sampling

Target CO₂-EOR reservoir, Intermediate Formation, and Groundwater

System	Series	Central Basin Platform Group/Formation	Lithology	Average Depth (m) of Samples at field area	Hydrostratigraphic Unit
Quaternary	Series	Alluvium	Silty sand	Samples at neid area	
Tertiary	Upper	Ogallala	Fluvial and lacustrine clastics	~45-55	
		Fredericksburg	Limestone		
Cretaceous	Albian	Antler / Paluxy	Sandstone		
Triassic	Upper	Dockum Group / Santa Rosa Fm.	Fluvial-deltaic and lacustrine clastics	~460	Evaporite Confining
		Dewey Lake			System
	Orbert	Rustler	Halite, Anhydr., Sylvite		
	Ochoan	Salado			
		Tansill			
		Yates			
	Guadalupian	Seven Rivers	Sandstone and Anhydrite		
Permian		Queen			
Perman		Grayburg			
		San Andres	Dolomite	~1630	
		Holt			
	Leonardian	Glorieta	Limestone and Dolomite		
	Leonardian	Clear Fork Group	Linestone and Dolonnite		Deep Basin Aquifer
		Wichita			System
	Wolfcampian	Wolfcamp			
		Cisco "Cline"	Shelf limestones, minor shale		
Pennsylvanian		Canyon	Shen milescones, millor shale		
		Strawn			
		Atoka	Shale		
Mississippian		Barnett	Share		
massispippidi		Mississippian	Limestone		

ENERGY Gardiner et al., 2020, App. Geochem.

Approach for identifying brine migration demonstrated through application of data transformation techniques to Permian Basin CO_2 -EOR field results

- Low-cost analytical techniques leveraged to monitor chemical composition of water samples: Na⁺, Ca²⁺, K⁺, Cl⁻, alkalinity, and TDS
- Leakage into groundwaters could be detected using these parameters, however competing inputs of these ions from agriculture complicate signal interpretation
- Solution: Focus on an intermediate geologic formation, that already contains installed wells, for monitoring
- Applying isometric-log ratios (ilr), a data transformation technique, provides a more robust source attribution tool
 - Produced water (PW) ilr are consistent during CO₂ injection → stable tracer
 - PW ilr distinct from Santa Rosa groundwater

Small amount (5%) of reservoir mixing with overlying formation water would result in significant chemical shift

Early-stage geochemistry-based leak detection

Characterizing what a geochemical signal looks like under CO₂/brine leakage scenarios

 Characterize expected signals of brine migration between geologic formations – mixing models developed with field data

2. Identify which combinations of chemical signatures indicate CO₂ migration – geochemical-statistical model to identify the probability that a leak occurred using common geochemical parameters

What does a leak look like (geochemically) and when do we need to do something about it?

Applying predicted geochemical reactions towards the statistical model

Identify which combinations of chemical signatures indicate CO₂ migration – geochemical-statistical model to identify the probability that a leak occurred using common geochemical parameters

Identified reaction matrix to represent dominant CO₂sandstone aquifer reactions

- Reaction matrix identifies relevant CO₂-rock reactions
- Mineral assemblages emphasize abundant minerals
 - Geochemical parameters are sensitive to these reactions

Step 1. Generating Reaction Matrix and Model based on Previous Research

	Α	В	С	D	E	F
	Reaction Pathways	Base Case Brine	Base Case Brine + CO ₂	Mechanisms Underlying Responses	Parameters related to Leakage Pathway	Confidence in Detecting Change
1	Dolomite (1° res.) → Wellbore migration	Equilibrium with formation	CO ₂ Induced Water-Rock Rxns	•Carbonate dissolution •Cement dissolution	 Dissolved ions [Ca²⁺, Mg²⁺, Sr²⁺, Fe²⁺] Barium and strontium isotopes 	•TBD using Bayesian Belief Network
2	Dolomite (1° res.) → Shale (seal) → Overlying Units	Box B1 + Shale Rxns	CO ₂ Induced Water-Rock Rxns	 Carbonate dissolution Shale dissolution 	 Dissolved ions [Ca²⁺, Mg²⁺, Sr²⁺] Strontium isotopes 	•TBD using Bayesian Belief Network
3	Sandstone (1° res.) → Wellbore migration	Equilibrium with formation	CO ₂ Induced Water-Rock Rxns	 Silica dissolution Cement dissolution 	 Dissolved ions [Na⁺, Ca²⁺, Mg²⁺, Fe²⁺] Barium strontium isotopes 	•TBD using Bayesian Belief Network
4	Sandstone (1° res.) → Shale (seal) → Overlying Units	Box B3 + Shale Rxns	CO ₂ Induced Water-Rock Rxns	 Carbonate dissolution Shale dissolution 	 Dissolved ions [Na⁺, Ca²⁺, Mg²⁺, Fe²⁺] Strontium isotopes 	•TBD using Bayesian Belief Network

Calculated changes in water chemical signals based on $N = CO_2$ reaction with the defined reaction matrix

18 mineral assemblages tested, involving different amounts of:

NATIONAL

- carbonate (calcite), feldspar (albite and anorthite), mica (annite and phlogopite), and chlorite (ripidolite)
- Quartz and kaolinite included in all reactions as the major sandstone phases
- Each mineral assemblage first equilibrated with Santa Rosa groundwater average fluid data, then reacted with different concentrations of dissolved CO₂

Application of statistical model to identify when dissolved ion combinations could relate to CO₂ leak

Using the Geochemical-Statistical model to identify priority parameters for monitoring – 1 Parameter Example

NATIONAL

ERGY

Bayesian Belief Network (BBN) model for leak inference with low magnesium concentrations.

Using the Geochemical-Statistical model to identify priority parameters for monitoring – 3 Parameter Example

0.01535 20.00059

Lessons Learned & Synergy Opportunities

Lessons Learned

- CO₂ concentration alone may not provide information on "early leaks"
- Simple geochemical parameters can provide a first-pass check on whether fluid communication or CO₂ leakage occurred
- More advanced geochemical analytical techniques can be used to better pinpoint the cause for unwanted migration

- Synergy Opportunities
 - Apply isometric log ratio and the geochemical-statistical model at field demonstration sites
 - Interface with NRAP IAM

Develop Process-Based Statistical Models using Geochemistry-Based Tools

 Identify which chemical tracers can: A) be reliably identified and measured in field samples with techniques of varied time and cost, and B) can be used to identify major processes that may occur during CO₂ and brine leakage

<u>Refine the Reaction Matrix for Testing with Bayesian</u> <u>Belief Network Statistical Modeling</u> - incorporate *isotope-based tracers* as part of the decision tree of key aqueous species for identifying migration pathway

	Α	В	с	D	E	F
	Reaction Pathways	Base Case Brine	Base Case Brine + CO ₂	Mechanisms Underlying Responses	Parameters related to Leakage Pathway	Confidence in Detecting Change
1	Dolomite (1 [*] res.) → Wellbore migration	Equilibrium with formation	CO ₂ Induced Water-Rock Rxns	-Carbonate dissolution -Cement dissolution	-Dissolved ions [Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Fe ²⁺] -Barium and strontium isotopes	·TBD using Bayesian Belief Network
2	Dolomite (1 [*] res.) \rightarrow Shale (seal) \rightarrow Overlying Units	Box B1 + Shale Rxns	CO ₂ Induced Water-Rock Rxns	-Carbonate dissolution -Shale dissolution	·Dissolved ions [Ca ²⁺ , Mg ²⁺ , Sr ²⁺] ·Strontium isotopes	-TBD using Bayesian Belief Network
3	Sandstone (1 [*] res.) → Wellbore migration	Equilibrium with formation	CO ₂ Induced Water-Rock Rxns	-Silica dissolution -Cement dissolution	·Dissolved ions [Na ⁺ , Ca ²⁺ , Mg ²⁺ , Fe ²⁺] ·Barium strontium isotopes	 TBD using Bayesian Belief Network
4	Sandstone (1* res.) → Shale (seal) → Overlying Units	Box B3 + Shale Rxns	CO ₂ Induced Water-Rock Rxns	-Carbonate dissolution -Shale dissolution	-Dissolved ions [Na ⁺ , Ca ²⁺ , Mg ²⁺ , Fe ²⁺] -Strontium isotopes	-TBD using Bayesian Belief Network

Demonstrate Application of Bayesian Belief Network Statistical Model for Expected Signals of a Migration Event

Key Products:

- 2020: Develop decision tree of key aqueous geochemical signals for identifying potential leakage points from carbon storage reservoirs to groundwater. (Completed)
- 2021: Demonstrate application of process-based model towards identifying the signals most important for monitoring leakage in a geologic system of interest. (Expected EY21-Q4)

Thank You! Contact: Alexandra.Hakala@netl.doe.gov

Thank you!

Contact: Alexandra.Hakala@netl.doe.gov

Acknowledgement: Research support from the Office of Clean Coal, Tabula Rasa Energy (field site access), private well owners for site access

Disclaimer: This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Products from CS Geochemistry-Based Monitoring R&D

Geochemical Monitoring of Groundwater Impacts – Novel Geochemical Signal Methodologies

Advanced Storage Task 21 Project – Total Project Value \$ k

Products:

- 2020: Demonstrate hypothetical processes and signals in a carbonate system if migration occurs in a CO₂-EOR reservoir (Completed EY20-Q2)
- 2020: Develop decision tree of key aqueous geochemical signals for identifying potential leakage points from carbon storage reservoirs to groundwater. (Completed EY20-Q4)
- 2021: Demonstrate application of process-based model towards identifying the signals most important for monitoring leakage in a geologic system of interest. (Expected EY21-Q4)

Geochemical Tracer	What it Shows	Evaluation Approach Field Deployment Status		Deployment	Technology Transfe	er
Direct Monitoring	Field-Based Technique	S			Published	In Progress
Direct CO ₂ Measurement in Shallow Wells	 Amount of dissolved CO₂ in groundwater via direct measurement 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ -EOR and natural analog sites	Field-tested		
Field-Based Electrochemical Sensors	 Presence and concentrations of dissolved iron and reduced sulfur species – identifies intrusion of fluids that impact local reservoir chemical conditions 	Laboratory	Verified analytical techniques and applied to measuring iron and sulfur in samples collected at a natural analog site	Deployable (shallow monitoring); NETL- modified technique		 TRS report with details on electrode construction and field deployment
CarboQC for Direct CO ₂ measurement	 Direct measurement of dissolved CO₂ through PVT technique 	Laboratory + Field Assessment	Verified analytical techniques and tested in emergent groundwaters	Deployable; NETL- modified technique	Vesper and Edenborn, J. of Hydrol., 2012, 438-439	

Geochemical Tracer	What it Shows	Evaluation Approa	ch	Field Deployment Status	Technology Transfe	er
Ion Chromatograp	hy-Based Techniques				Published	In Progress
Cations Li ⁺ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mg ⁺ , Ca ⁺ , Sr ²⁺ , Ba ²⁺	 Screen major cations for large field sample sets within a few days – indicator of water source and whether additional tracers need to be analyzed for prediction/interpretation 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ -EOR and natural analog sites	Deployable; NETL- modified technique	• Gardiner et al. Applied Geochemistry (2020)	 NETL TRS describing use of ion chromatography to screen high-TDS field samples
Anions fluoride, chloride, nitrite, nitrate, bromide, bromate, phosphate, chromate, iodide, sulfate, thiosulfate, sulfite	 Screen major anions for large field sample sets within a few days – indicator of water source and whether additional tracers need to be analyzed for prediction/interpretation 	Laboratory + Field Assessment	Verified analytical techniques and applied to field samples from CO ₂ - EOR site	Deployable; NETL- modified technique	 Gardiner et al. Applied Geochemistry (2020) 	 NETL TRS describing use of ion chromatography to screen high-TDS field samples
Organic Acids acetate, lactate, formate, butyrate, propionate, pyruvate, succinate, oxalate, citrate	 Screen organic acids in for large field sample sets – indicators of biological activity 	Laboratory + Field Assessment	Verified analytical techniques and applied to field samples from CO ₂ - EOR site	Deployable; NETL- modified technique	 Gardiner et al. Applied Geochemistry (2020) 	 NETL TRS describing use of ion chromatography to screen high-TDS field samples

Geochemical Tracer	What it Shows	Evaluation Approa	ch	Field Deployment Status	Technology Transfe	er
Ion Chromatograp	hy-Based Techniques				Published	In Progress
Transition Metals Fe ³⁺ , Fe ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Zn ²⁺ , Cd ²⁺	 Screen large field sample sets for metals within a few days – identify whether more detailed ICP-based techniques are needed to characterize water source Identify redox changes that may indicate fluid migration 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ -EOR sites	Deployable; NETL- modified technique		 NETL TRS describing use of ion chromatography to screen high-TDS field samples
Rare earths La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu	 Screen large field sample sets for REEs within a few days – identify whether more detailed ICP-based techniques are needed to characterize water source 		Verified analytical techniques and applied to field samples from CO ₂ - EOR site	Deployable; NETL- modified technique		 NETL TRS describing use of ion chromatography to screen high-TDS field samples
Sulfides sulfide, cyanide	 Complement field-based electrochemical monitoring techniques Identify redox changes that may indicate fluid migration 	Laboratory + Field Assessment	Verified analytical techniques and applied to field samples from CO ₂ - EOR site	Deployable; NETL- modified technique		 NETL TRS describing use of ion chromatography to screen high-TDS field samples

Laboratory-Based Chemical Analysis of Field Samples for CS Monitoring Developed/Verified through CS Geochemistry-Based Monitoring Projects (2011 – 2017) & Task 20 (2017 – 2019), Slide 3 of 5

Geochemical Tracer	What it Shows	Evaluation Approach		Field Deployment Status	Technology Trans	fer
Isotope-Based Te	chniques				Published	In Progress
Strontium ⁸⁷ Sr/ ⁸⁶ Sr	 As stable isotope indicator of the sources of geologic brines and reservoir CO₂-fluid-rock reactions Used to define mixing curves for expected values in receptor formations 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ - EOR and natural analog sites	Deployable; May be location-specific (NETL- developed technique)	 Wall et al. JAAS (2013) Wall et al. TRS report Phan et al. App Geochem (2018 Gardiner et al. IJGHGC (2020) 	 Multi-isotopic monitoring of CO₂- EOR site in Permian Basin
Carbon ¹³ C/ ¹² C	 C indicates source of CO₂ detected Used to identify whether CO₂ is from the storage reservoir 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ - EOR and natural analog sites	Deployable (established techniques)	• Gardiner et al. IJGHGC (2020)	 Multi-isotopic monitoring of CO₂- EOR site in Permian Basin
Oxygen ¹⁸ O/ ¹⁶ O	 Indicates geologic versus atmospheric contributions to water Used to identify whether high TDS fluid is from deep reservoirs 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ - EOR and natural analog sites	Deployable (established techniques)	• Gardiner et al. IJGHGC (2020)	 Multi-isotopic monitoring of CO₂- EOR site in Permian Basin

Laboratory-Based Chemical Analysis of Field Samples for CS Monitoring Developed/Verified through CS Geochemistry-Based Monitoring Projects (2011 – 2017) & Task 20 (2017 – 2019), Slide 4 of 5

Geochemical Tracer	What it Shows	Evaluation ApproachFieldDeploymentStatus		Technology Trans	fer	
Isotope-Based Tee	chniques				Published	In Progress
Lithium ⁷ Li/ ⁶ Li	 Identifies whether reservoir brine contacted the seal layer or organic- rich zones Identifies whether migrated brine originates from the carbon storage reservoir 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ - EOR site	Deployable; May be location-specific (NETL- developed technique)	 Pfister et al. (2017) Phan et al. App Geochem (2018) 	 NETL TRS report on application of Li isotopes as geochemical tracers for carbon storage
Boron ¹¹ B/ ¹⁰ B	 Identifies whether leaked CO₂ contacted brine, or if it came directly from the sc-CO₂ plume 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ - EOR site	Deployable; May be location-specific (NETL- modified technique)	• Phan et al. COGEL (2020)	 NETL TRS report on application of B isotopes as geochemical tracers for carbon storage

Laboratory-Based Chemical Analysis of Field Samples for CS Monitoring Developed/Verified through CS Geochemistry-Based Monitoring Projects (2011 – 2017) & Task 20 (2017 – 2019), Slide 5 of 5

Geochemical Tracer	What it Shows	Evaluation Appro	ach	Field Deployment Status	Technology Trans	fer
Isotope-Based Te	chniques				Published	In Progress
Uranium ²³⁴ U/ ²³⁸ U	 Relevant for regions with elevated uranium present in subsurface reservoirs Identifies fluid migration and oxidation-reduction processes 	Laboratory + Field Assessment	Verified analytical techniques and applied to field sampling at CO ₂ - EOR and natural analog sites	Location-specific (need detectable concentrations of U; established techniques)	 Phan et al. GCA (2019) Gardiner et al. IJGHGC (2020) 	
Barium ¹³⁸ Ba/ ¹³⁴ Ba	 Relevant for regions with elevated Ba Indicates fluid mixing between the CS reservoir and overlying geologic units 	Laboratory + Field Assessment	Verified analytical techniques and applied to field samples from CO ₂ -EOR site	Technique developed in 2018-2019 for onshore gas (NETL-developed technique); Modified for carbon storage in 2019-2020		 Multi-isotopic monitoring of CO₂- EOR site in Permian Basin NETL TRS on application of Ba isotopes as geochemical tracers for carbon storage

Appendix 2

Additional information on Permian Basin CO₂-EOR geochemical monitoring

Milestone: Model what a leak would look like in the geochemical signals at different leakage points in a CO_2 -EOR system.

E. Seminole Field Data

\cdot CO₂-EOR field initiating CO₂ flood (Fig. 1)

Figure 1. Timeline of sampling history at field site, with dates of sampling trips and major field events below.

Opportunity to:

(1) Observe CO₂ induced changes in produced water

(2) Monitor overlying groundwaters for produced water intrusion

Potential Implications/Impact

- (1) Understand CO₂ water-rock-interactions
- (2) Develop applications of geochemical tools for monitoring, measurement, and verification

·Sampled produced waters and groundwaters (Fig. 2)

System	Series	Central Basin Platform Group/Formation	Lithology	Average Depth (m) of Samples at field area	Hydrostratigraphic Unit		
Quaternary		Alluvium	Silty sand	•			
Tertiary	Upper	Ogallala	Fluvial and lacustrine clastics	~45-55			
Cretaceous	A He i e ve	Albian	Fredericksburg	Limestone		1	
Cretaceous	Albian	Antler / Paluxy	Sandstone		Fuenerite Confining		
Triassic	Upper	Dockum Group / Santa Rosa Fm.	Fluvial-deltaic and lacustrine clastics	~460	Evaporite Confining		
		Dewey Lake			System		
	Ochoan	Rustler	Halite, Anhydr., Sylvite				
	Ochoan	Salado					
	Guadalupian	Tansill	Sandstone and Anhydrite				
		Yates					
		Seven Rivers					
Permian		Queen					
Perman			Grayburg				
		San Andres	Dolomite	~1630			
		Holt					
	Leonardian	Glorieta	Limestone and Dolomite				
	Leonardian	Clear Fork Group	Limestone and Dolomite		Deep Basin Aquifer		
		Wichita			System		
	Wolfcampian	Wolfcamp					
		Cisco "Cline"	Shelf limestones, minor shale				
Pennsylvanian		Canyon	shell limestones, minor shale				
		Strawn					
		Atoka	Shale				
Mississippier		Barnett	Single				
Mississippian		Mississippian	Limestone		7		

Figure 2. Simplified stratigraphic column¹ of the Central Basin Platform; highlighted formations were sampled at E. Seminole field.

Geochemical changes: Producing Formation

San Andres Fm. Produced Waters

- Statistically significant (p < 0.5) increases in dissolved inorganic constituents [alkalinity, TDS, Na⁺, Cl⁻, SO₄²⁻] in produced waters
- Alkalinity increases due to dissolution of CO₂ into formation water
- Sulfate increase likely due to sulfurmineral oxidation
- Na⁺, Cl⁻, and TDS increases due to enhanced mixing with denser formation water below oil-water contact
- No increase in Ca²⁺ or Mg²⁺, suggesting negligible carbonate reservoir dissolution
 - Indicates geologic leakage out of producing formation unlikely at this time

Geochemical changes: Producing Formation

San Andres Fm. Produced Waters

- $\mathbf{NE}_{\mathbf{ENERGY}}^{\mathbf{NATIONAL}}$
- Statistically significant (p < 0.5) increases in dissolved inorganic constituents [alkalinity, TDS, Na⁺, Cl⁻, SO₄²⁻] in produced waters
- Alkalinity increases due to dissolution of CO₂ into formation water
- Sulfate increase likely due to sulfurmineral oxidation
- Na⁺, Cl⁻, and TDS increases due to enhanced mixing with denser formation water below oil-water contact
- No increase in Ca²⁺ or Mg²⁺, suggesting negligible carbonate reservoir dissolution
 - Indicates geologic leakage out of producing formation unlikely at this time

Geochemical changes: Producing Formation

San Andres Fm. Produced Waters

- Alkalinity increases due to dissolution of CO₂ into formation water
- Sulfate increase likely due to sulfurmineral oxidation
- Na⁺, Cl⁻, and TDS increases due to enhanced mixing with denser formation water below oil-water contact
- No increase in Ca²⁺ or Mg²⁺, suggesting negligible carbonate reservoir dissolution
 - Indicates geologic leakage out of producing formation unlikely at this time

Milestone: Model what a leak would look like in the geochemical signals at different leakage points in a CO_2 -EOR system.

E. Seminole Field Data

· Produced Water Results

- After CO₂ injection, significant shifts in certain analytes [alkalinity, TDS, Na⁺, Cl⁻, SO₄²⁻]
- No significant shifts in others [Ca²⁺, Mg²⁺]

ΙΔΤΙΟΝΔΙ

TECHNOLOGY

Interpretation

- Injected CO₂ is dissolved in water [solubility trapping] and not likely causing carbonate dissolution → Reservoir integrity preserved
- Produced water geochemistry reflects CO_2 injection \rightarrow Track CO_2 plume in reservoir

Milestone: Model what a leak would look like in the geochemical signals at different leakage points in a CO2-EOR system.

E. Seminole Field Data

· Distinctive geochemistry

- Applied data transformation tool (isometric logratios) to produced water
- Despite shifts following CO₂ injection, E.
 Seminole produced water still occupies a small, distinctive range (Fig. A)

· Groundwater Results: Detecting Leakage

- E. Seminole produced water occupies small range relative to local produced waters (Fig. B)
- Mixing model demonstrates <u>hypothetical</u> detection of leakage from producing formation into overlying, intermediate groundwater (Fig. C)

ΔΤΙΟΝΔΙ

TECHNOLOGY

Bayesian Belief Network: Incorporating Reaction Matrix

