Robust CO₂ Plume Imaging using Joint Tomographic Inversion of Seismic Onset Time and Distributed Pressure and Temperature Measurements

Project Number **DE-FE0031625**

Akhil Datta-Gupta

Texas A&M University

(collaborator – Battelle Memorial Institute)

U.S. Department of Energy

National Energy Technology Laboratory

Carbon Management and Oil and Gas Research Project Review Meeting

August 2021

Presentation Outline

- Why are we doing this?
 - Benefits to the program
- How are we doing this?
 - Project overview and methodologies
- Accomplishments to date
 - Application to a post-combustion CO2 WAG Pilot:
 Petra Nova Parish CCUS Project
 - Application to the Midwest Regional Carbon
 Sequestration Partnership Project: Chester 16 Reef
- Summary and next steps

Benefit to the Program

Program goals being addressed

 Development of modeling and monitoring methods, tools, technologies that improve the certainty about the position of the CO₂ plume over time

Project benefits statement

- Provide a practical & cost-effective methodology for CO₂ plume delineation using routine pressure/ temperature measurements + geophysical monitoring
- Facilitate (near) real-time monitoring of CO₂ plume migration in field projects needed to meet current regulatory requirements

Project Overview: Goals and Objectives

- Develop and demonstrate a rapid and cost-effective methodology for spatio-temporal tracking of CO₂ plumes during geologic sequestration
 - Pressure and temperature tomography. Use pressure & temperature arrival time data to infer spatial distributions of CO₂ plume
 - Integration of seismic onset time: Improve the seismic monitoring workflow through the integration of 'onset' times
 - Joint Bayesian inversion and field validation: Efficient Bayesian framework for probabilistic data integration validated using data from ongoing field projects (Petra Nova Parrish CCUS project, Texas)

Methodology CO₂ Plume Imaging: Key Elements

- Recasting Fluid Flow Equations as Tomographic Equations
 - High frequency asymptotic solution
- Utilization of the Seismic Onset Time Concept
- Parsimonious Representation of Geologic Heterogeneity
 - III-posed inverse problem, needs regularization
 - Image compression via basis functions
- Data Integration and Image Updating
 - Multi-objective optimization and Inverse Modeling

Methodology

Asymptotic Approach: Fluid Fronts vs. Wave Fronts *

* Fatemi and Osher, 1995; Vasco and Datta-Gupta, 1999; 2016

- High frequency solution to the flow and transport equation mimics the one usually found in wave propagation
- We can exploit the analogy between the propagating fluid front and a propagating wave
- The trajectories or flow paths associated with the fluid front are similar to rays in seismology/optics
- Provides an efficient formalism for plume imaging using reservoir dynamic response

Accomplishments to Date: Year 1

- Developed a Formalism for CO2 Plume Tracking Using Pressure Tomography
- CO₂ Plume Tracking at Petra Nova CCUS Pilot Project
 - Fuel 255 (2019); SPE Res. Eval. and Engg. (2019)
- Saturation Imaging Seismic Onset Time: Impact of Survey Frequency
 - Journal of Petroleum Science and Engineering (2020)

Accomplishments to Date: Year 2

- Developed a Formalism for CO₂ Plume Tracking Using Temperature Tomography
- Application of Seismic Onset Time to Saturation Imaging at the Peace River Project, Canada (Collaboration with Shell)
 - Geophysical Journal International (Published, December 2020)
 - First Break (Published, February 2021)
- Analytical Approaches to Quantitative Analysis of Bottom Hole Pressure and Temperature Data
 - AEP Mountaineer CO2 Injection Project

Accomplishments to Date: Year 3

- Field Application of Pressure and Temperature Tomography for CO2 Plume Imaging
 - Pressure and DTS Data at the Chester-16 Reef CO2
 Injection Project (MRCSP) (Published 2021, SPE 206249)
- Battelle developed a screening model for predicting pressure buildup at CO2 injection wells
 - The model can assist project developers during the early days of project planning

Methodology

Asymptotic Solution: Diffusivity Equation

Diffusivity equation in heterogeneous medium

$$\phi(\mathbf{x})\mu c_t \frac{\partial P(\mathbf{x}, t)}{\partial t} = \nabla \cdot (k(\mathbf{x})\nabla P(\mathbf{x}, t))$$

- Transform to Fourier domain

$$\phi(\mathbf{x})\mu c_t(-i\omega)\widetilde{P}(\mathbf{x},\omega) = k(\mathbf{x})\nabla^2 \widetilde{P}(\mathbf{x},\omega) + \nabla k(\mathbf{x}) \cdot \nabla \widetilde{P}(\mathbf{x},\omega)$$

 High frequency asymptotic solution leads to a propagation equation for pressure 'front':

$$\sqrt{\alpha(\mathbf{x})} |\nabla \tau(\mathbf{x})| = 1$$
 where $\alpha(\mathbf{x}) = \frac{k(\mathbf{x})}{\phi(\mathbf{x})\mu c_t}$

Eikonal Equation

The Eikonal equation can be solved efficiently using the Fast Marching Method (Sethian, 1996)

Methodology Pressure 'Front' Propagation

West Ranch Field 98-A CO2 Pilot: CO₂ Plume Profile Comparison

Methodology

Temperature Tomography

- Analogous Approach to Pressure Tomography
- Assumption Thermal Transport is Dominated by Advection
- Transport Equation is Transformed into Eikonal Equation using the Asymptotic Approach
- Streamlines are Used to Develop a Formalism for Thermal Tracer Tomography

Asymptotic Solution: Transport Equation

(Fatemi and Osher, 1995; Vasco and Datta-Gupta, 1999, 2016)

$$\tilde{C}(\mathbf{x},\omega) = e^{-i\omega\tau(\mathbf{x})} \sum_{k=0}^{\infty} \frac{A_k(\mathbf{x})}{(-i\omega)^k}$$

- $\tau(x)$, the phase of the wave, represents the geometry of the propagating front
- High frequency asymptotic solution leads to the Eikonal Equation:

$$\vec{v} \cdot \nabla \tau = 1$$

The Eikonal equation can be solved efficiently using the streamline approach

Streamline Time of Flight and Fluid Front Propagation

Permeability Distribution

Time-of-Flight

Streamline Distribution

Front Propagation (1000 Days)

Propagation Time of Thermal Tracer

• Travel Time of Thermal Tracer (Somogyvari et al., 2016; Somogyvari and Bayer, 2017):

$$\tau_T = \int_0^{\varphi} \frac{\phi}{R \left| \vec{u} \right|} \, \mathrm{d} \xi$$
 Heat capacity of the matrix Thermal Retardation Factor = $R = \frac{\phi(x) C_f}{C_m}$ Heat capacity of the fluid

Travel Time of the Thermal Tracer Represents the Propagating Thermal Front

Chester-16 Project Overview

- Chester-16 Pinnacle Reef located in Otsego county, Michigan
- Large scale CO2 storage test, Midwest Regional Carbon Sequestration Partnership (MRCSP)
- CO₂ arrival tracked at the monitoring well via DTS
- Infer distribution of CO₂ inflow at different zones using Pressure and DTS

Chester-16: Observed Data (Pressure and DTS)

Pressure

Bottom-Hole Pressure of Injection Well

Behind-casing Pressure of four sensors at Monitoring Well

Location of behind-casing sensors

Temperature

DTS (Injection Well)

DTS (Monitoring Well)

Simulation Model Description

- Grid: 50 x 28 x 79 = 110600 cells
- Todd-Longstaff Miscible Model
- 2 Wells: One Injector, one monitoring well
- Heterogeneous Property:
 - Permeability range: [1e-10,129] md
 - Porosity range: [0,0.275]

CO₂ Injection History

Injection Period	Date Range	Days Injected	Target Formation
1	01/11/2017 - 01/14/2017	4	A1 Carbonate
2	02/22/2017 - 04/06/2017	44	A1 Carbonate
3	04/22/2017 - 07/24/2017	94	A1 Carbonate
4	09/29/2017 - 11/27/2017	60	Brown Niagaran
5	12/16/2017 - 1/16/2018	32	A1 Carbonate
6	02/05/2018 - 03/21/2018	45	A1 Carbonate and Brown Niagaran
7	05/26/2018 - 08/14/2018	81	A1 Carbonate and Brown Niagaran
8	10/20/2018 - 12/31/2018	73	A1 Carbonate and Brown Niagaran

CO2 Injection Period: January 2017 – December 2018

Data Integration and Model Updating: Challenges

- Diverse Data Types
 - Scale, resolution and precision
- Poorly constrained
 - Sparse data, large parameter space
- Multiscale, Multiobjective Inverse Problem
 - Large scale update using genetic algorithm to match pressure data
 - Fine-scale updates using streamlines to match DTS data

Large-scale Updates: Region Definition by Spectral Clustering (Kang et al., 2014)

- Spectral Decomposition of the Grid Laplacian Matrix with Adjacency Information
- Region Definition by Clustering Analysis of the 2nd
 Smallest Eigen Vector (Ratio Cut Partitioning)
- Five Regions Identified for Pressure Updating

Large-Scale Updates: Parameter Sensitivity Analysis

$$\Delta J = f(X) = \sum_{i}^{Timestep} \left[\ln |\Delta BHP_{Injector}|_{i} + \sum_{j=1,2,3,4} \ln |\Delta Pressure_{Sensor_{j}}|_{i} \right]$$
 $sensitivity_{i} = \frac{\Delta J}{\Delta x_{i}} x_{i}^{Base}$

Pressure Updating Using Genetic Algorithm

$$\Delta J = f(X) = \sum_{i}^{Timestep} \left[\ln |\Delta BHP_{Injector}|_{i} + \sum_{j=1,2,3,4} \ln |\Delta Pressure_{Sensor_{j}}|_{i} \right]$$

- Genetic Algorithm Setups
 - # of Generations: 10
 - # of Populations: 30
- Multiple history-matched models
 - Select best 7 realizations

Pressure Matching Results

• : observed, —— : Initial Model, —— : 7 Selected Models, —— : Best

Behind Casing Pressure Sensors

DTS Matching via Fine Scale Updating

Minimize a Penalized Misfit Function

Data Misfit:

$$\|\delta \mathbf{d} - \mathbf{S} \delta \mathbf{k}\| = \sum_{i=1}^{M} \left(\delta d_i - \sum_{j=1}^{N} S_{ij} \delta k_j \right)^2$$

Model Norm:

$$\|\delta\mathbf{k}\| = \sum_{j=1}^{N} (\delta k_j)^2$$

Model Roughness:

$$\|\mathbf{L}\delta\mathbf{k}\| = \sum_{i=1}^{N} (\nabla \delta k_{j})^{2}$$

Streamlines allow analytic computation of the sensitivity of the arrival times to reservoir properties

DTS Matching at the Monitoring Well

Matching data: DTS data of Monitoring Well

DTS data is matched in terms of arrival time of a threshold temperature (onset time)

6100

DTS Matching: Temperature Response at Selected Depths

Permeability Changes After Local Updating with DTS Data

Flow Field and Temperature Update: Pressure +DTS Matching

Best-matched model from GA

CO₂ Plume Tracking

- Gas saturation comparison at 12/31/2018
- CO₂ moves further after model updates using observed pressure and DTS data
- Vertical movement of CO2 is limited and CO2 mostly stays in the zone of injection

Summary

- Developed novel approaches to CO2 plume tracking using tomographic inversion of pressure, temperature and seismic data
- Our approach exploits the analogy between a propagating fluid front and a propagating wave-front to develop a formalism for flow and transport tomography
- Field applications at Petra Nova CCUS CO2 pilot project and Chester-16 Midwestern Regional Sequestration Project demonstrate the practical viability of our approach
- CO2 plume movement results are consistent with independent warmback analysis of the temperature data

Next Steps

 Field validation of the numerical tomographic inversion using data from ongoing CO₂ injection project at the West Ranch Field, TX (Petra Nova Parish CCUS)

Appendix

 These slides will not be discussed during the presentation, but are mandatory.

Organization Chart

Gantt Chart

		BP1				l	BP2			E		
TASK NAME		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1.0 Project Management and Planning				•				•				•
Update Project Management Plan	•											
Update Technology Maturation / Data Management Plans												
Complete quarterly progress reports		*	*	*	♦	*	♦	*	♦	♦	*	♦
Complete annual and final reports				*				*				♦
Task 2.0 CO2 Plume Tracking Using Pressure and Temperature Tomography								•				
Subtask 2.1 Rapid forward modeling of pressure and temperature transmission				♦								
Subtask 2.2 Tomographic inversion of pressure and temperature data						*						
Subtask 2.3 Testing with synthetic data sets								•				
Task 3.0 Time-lapse 'Onset' Times for CO2 Plume Imaging						•						
Subtask 3.1 Impact of CO2 saturation on the 'onset' times of seismic attributes				♦								
Subtask 3.2 Integration of seismic onset time for CO2 saturation front detection						*						
Task 4.0 Data Assimilation via Joint Inversion and Uncertainty Assessments								•				
Subtask 4.1 Geologic model parameterization								♦				
Subtask 4.2 Integration of fluid flow and geophysical data/uncertainty quantification								*				
Task 5.0 Field Validation of CO2 Plume Tracking via Tomographic Inversion												♦
Subtask 5.1 Application to the Petronova Parish Holdings CCUS Project											♦	
Subtask 5.2 Application to Peace River site data											♦	