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Sub-Target Resolution Scale Team

Task 2 Mission: Evaluate existing and state of the art technologies for incorporating multiple 
types of disparate scale data to assess rock properties (CO2 saturation for Phase 1)  in a ‘real 
time‘ sense, and identify/apply/test machine learning strategies that can aid in this endeavor.



Task 2 : Rock Property Visualization

• Task 2 Goal For Phase 1 : Proof of concept for applying Physics-Based Machine Learning for providing 
estimates of CO2 saturation at depth, along with uncertainties in those estimates, at 1 to 10m 
resolution.

• Specific Sub-Tasks

1. Determine data that we will be using for testing, and how that data will be used for estimating CO2 

saturation

a. Core-to-Well scale: What data measured in lab provides value to estimating CO2 saturation at target 
resolution?

b. Well-to-field scale: What multi-physics data should we use, and how to use it to estimate CO2 

saturation?

2. Implement and test physics-based approaches for estimating CO2 saturation from various data types

3. Implement and test ML approaches for

1. Estimating CO2 saturation from the various scales and types of data

a. Upscaling from the Core-to-Well scale to the target resolution

b. Downscaling from the Well-to-Field scale to target resolution, and provide images of CO2

saturation rather than geophysical properties

2. Provide estimates of uncertainty of CO2 saturation at different scales
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Task 2 Data : Kimberlina 1.2 Model/Data Creation
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Unstructured TOUGH2 Mesh

Interpolation/Extrapolation

Vp at 20 Years on Regular 
(10m x 10m x 10m) grid

• Using 100 different realizations / TOUGH2 runs 
of the Kimberlina 1.2 Model

◦ Each realization has 35 different time steps

◦ Interpolation/extrapolation to regular grid more 
difficult than expected

• Test Data sets computed for Year 0 and Year 
20 from Sim001

• 2D Testing

◦ Test data computed along Y direction at X=0 in 
Year 0 and Year 20 

◦ Training data computed along Y-Lines from     
X=-2 to X=3km for all 35 time steps in Sim001

― 2D surface seismic at X=100m intervals

― Borehole-to-surface EM with 2 sources at X=200m

― Gravity in 2 boreholes per line and surf at X=200m

• 3D Testing

◦ Use all 100 Sims and 35 Time steps

◦ For EM and Gravity use 3 monitoring wells 
shown to left for borehole sources/data

• All models/data to be uploaded to EDX
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Task 2 Data : Kimberlina 1.2 Model/Data Creation
Time Lapse Calc. Geophysical Data (Year 20- Year 0)
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Task 2 Data : Kimberlina 1.2 Model/Data Creation
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Creation of Kimberlina 1.2 
Synthetic Well logs

MW1 Pre-Injection Logs MW1 Logs after 20 Years of Injection

• Synthetic logs created in 
4 hypothetical well 
locations

• Density, velocity and 
resistivity logs created in 
3 monitoring wells  at 0, 
1,2, 5, 10, 15 and 20 
years after injection start 

• Time lapse CO2 saturation logs created in all 
wells at times after injection

• Geophysical logs created by taking high 
frequency content present in real Kimberlina 1 
well log and adding to model property values 
at well locations. CO2 saturation created by 
multiplying model CO2 values by scaled 
porosity logs

Map view with well locations



Task 2 Data : Kimberlina 1.2 Model/Data Creation
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• Core to pore scale characterization underway of Round Mountain Well #1 (3500-3900’)

• scCO2 saturation tests in micro-CT scanner Completed

• Two zones initially tested too low permeability to perform scCO2 injection

Low resolution
medical CT images High resolution

industrial CT images

High-resolution micro-CT images (1 voxel = 1.4 microns)

Micro-CT scanner 
with core holder



Task 2 Data : Status of ‘Bell Creek’ Data Sharing Agreement
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• Three iterations so far….
◦ Initial concept was to allow access to anyone who clicked a button acknowledging 

that they agree to the terms and conditions associated with use of the data. The EERC 
compiled an initial draft of this language and shared it with Denbury for review.

◦ Denbury requested a more in-depth agreement requiring that each party sign the 
agreement prior to accessing the data. The EERC worked with Denbury to prepare a 
new agreement. 

◦ Due to concerns raised by NETL and several universities (primarily over the 
indemnification language in the document), NETL prepared a new agreement based 
on their standard NDA which would cover any entities subcontracted by NETL (i.e. –
universities). Denbury has agreed to this agreement; however, there was no language 
covering other national labs.

• Currently, NETL is reaching out to the other national labs to determine how 
to best incorporate them into the agreement. Once that language is 
incorporated, the agreement will be provided to Denbury for review.



Pore-to-Well Scale Efforts

• Four pore to core scale experimental data sets (CT to kr, CT plus acoustic, 
NMR measurements of saturation, and thin section/2D image analyses) to 
create a robust set of data to upscale to well-scale properties. 

• Two methods being evaluated to go from centimeters to meters

• Leveraging unique laboratory facilities to capture data that would not 
typically be available. ML to understand what features of pore to core 
scale properties could be further utilized to constrain and improve models 
of saturation evolution in injection reservoirs
◦ Efforts for site core characterization distilled down to a porosity, permeability, and 

maybe some heterogeneity.
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Pore Scale Isolation & Core Flow
With Medical CT scanner

• scCO2/brine relative permeability 
measurements through the samples that 
have had pore scale imaging performed 
on sub-cores.

• And porting to core scale simulations
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Schematic and photograph of the CT + ultrasonic measurement setup at PSU
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Acoustic 
signal

Pore-scale Imaging Experimental Setup PSU Core Imaging Scale



Nuclear Magnetic Resonance Results: Oil-Brine + CO2
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Upscaling Pore Features to Well Scale

Well

Core

Reservoir properties from 

surface seismic 

measurements 

UPSCALE
DOWNSCALE

CORES WELL LOGS SEISMIC
DATA

2D and 3D machine learning-driven 

image analysis coupled with fractal 

theory to estimate rock properties BELL CREEK DATA
(Salako et al., 2017)

GR Por Sat

RMS Amplitude 

Difference map  

(2014-2012)



SCO2 Breakthrough

Reservoir Simulation
Reservoir Fluid Analysis
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Light fraction Heavy fraction

 

Flow ConceptLight fraction

Oil fraction

Heavy fraction

Injector2
Injector1

Producer

Injector2

Injector1
Producer

Fluid segregation (1 year)

Producer Producer

Injector3 Injector2 Injector2

Injector 1 Injector 1Injector 4 Injector 4

Injector3

Fluid Velocity

Fluid Modulus

Injector: Kf ≈-0.8 GPa

Producer: Kf ≈-0.4 GPa

Injector: Vp ≈ -600 m/s

Producer: Vp ≈ -200 m/s

SCO2 Breakthrough



Rock Typing to Upscale Flow Properties

• Upscaling saturation functions via 
multiscale geologic models

• Random forest to train data set. 
Feature space: saturation, mean 
pore size, mean throat size, porosity, 
permeability and coordination 
number. Target: permeability.
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Upscaling Saturation Functions from to Meter Scale

• Connectivity index, 
pore/throat 
features, and bulk 
properties being 
used to create 
near-well models 
of representative 
flow
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Task 2 Well–to–Field Scale Imaging / Visualization
Stochastic Neural-Net Workflow
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Task 2 Well–to–Field Scale Imaging / Visualization
2D Inversion-Net Example (LANL Approach)
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Kimberlina GCS Model

IW

• Improved resolution and fewer artifacts compared to  traditional seismic full 
waveform inversion (see image to left)

• ML derived estimates of uncertainty in conjunction with Vp image

Deep Learning Seismic Imaging with Uncertainty

Traditional FWI

ML Derived Vp Image ML Derived Estimate of Standard Deviation



Task 2 Well–to–Field Scale Imaging / Visualization
2D Inversion-Net Example (LANL Approach)
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Test Results on 

Kimberlina Data

Kimberlina GCS 

Model (3D)

Kimberlina GCS 

Model (2D)

InversionNet3D

Physics-based 

Inversion

Qili Zeng, Shihang Feng, Brendt

Wohlberg, and Youzuo Lin, 

“InversionNet3D: Efficient and 

Scalable Learning for 3D Full 

Waveform Inversion,”  pre-print 

available in arXiv, 2021 (also Under 

Review in IEEE Transactions on 

Geoscience and Remote Sensing).



Task 2 Well–to–Field Scale Imaging / Visualization
2D Stochastic U-Net Example (LBL Approach)
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Kimberlina GCS Model

IW

• Providing CO2 saturation images and uncertainty estimates in real time.
• Improved resolution and fewer artifacts compared to  traditional seismic full 

waveform inversion (see image to left).
• Direct estimates of CO2 saturation rather than proxy geophysical properties.

Deep Learning Stochastic CO2 Imaging/ Visualization 

Traditional FWI



Task 2 Well–to–Field Scale Imaging / Visualization
3D Statistical Physics Based Inversion (CSM)
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• Jointly invert time-lapse geophysical survey data
◦ Controlled-source electromagnetic data

◦ Surface/borehole gravity data

• Clustering identifies regions of change in conductivity and density

• Combine with petrophysical model to convert to CO2 saturation changes
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Sun, J., & Li, Y. (2015). Multidomain petrophysically constrained inversion and geology differentiation using 
guided fuzzy c-means clustering. Geophysics,80(4), ID1-ID18.



Task 2 Well–to–Field Scale Imaging / Visualization
Resolution Enhancement by Supervised Learning (CSM)
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Note: Testing of a ‘CGAINS’ ML algorithm for downscaling was shown by CSM 
researchers not to perform.



Questions?
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Thank you!

dlalumbaugh@lbl.gov

dustin.crandall@netl.doe.gov
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