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Task 2 : Rock Property Visualization

Task 2 Mission: Evaluate existing and state of the art technologies for incorporating multiple
types of disparate scale data to assess rock properties (CO, saturation for Phase 1) in a ‘real
time’ sense, and identify/apply/test machine learning strategies that can aid in this endeavor.

Task 2: Rock Property Visualization Project Leadership
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Task 2 : Rock Property Visualization

« Task 2 Goal For Phase 1 : Proof of concept for applying Physics-Based Machine Learning for providing
estimates of CO, saturation at depth, along with uncertainties in those estimates, at 1 to 10m
resolution.

» Specific Sub-Tasks

1. Determine data that we will be using for testing, and how that data will be used for estimating CO,
saturation

a. Core-to-Well scale: What data measured in lab provides value to estimating CO, saturation at target
resolution?

b. Well-to-field scale: What multi-physics data should we use, and how to use it to estimate CO,
saturation?

2.  Implement and test physics-based approaches for estimating CO, saturation from v arious data types
3. Implement and test ML approaches for
1. Estimating CO, saturation from the various scales and types of data
a. Upscaling from the Core-to-Well scale to the target resolution

b. Downscaling from the Well-to-Field scale to target resolution, and provide images of CO,
saturation rather than geophysical properties

2. Provide estimates of uncertainty of CO, saturation at different scales
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Task 2 Data : Kimberlina 1.2 Model/Data Creation

Unstructured TOUGH2 Mesh - Using 100 different realizations / TOUGH2 runs
Vpat 20 Years on Regular of the Kimberlina 1.2 Model

o e (10m x 10m x 10m)grid o . :
- - o Eachrealization has 35 different time steps

“ | 38 o Interpolation/extrapolationto regular grid more
= B 0 ' e difficult than expected
‘ @“ . 3 2%« Test Data sets computed for Year 0 and Year
A e | +E 20 from Sim001
j Year 200 - 002 sauratn 25 ' 2D TeSﬁng
- e E | 28 o Test datacomputedalongY direction at X=0in
o g o sy : : Wi . : , W2 YearOand Year 20

T Y (km) .. .
= - ; 7= 3km xtm o Training datacomputed along Y-Lines from

X=-2to X=3km for all 35 time stepsin SIMOO01
— 2D surface seismic at X=100m intervals
— Borehole-to-surface EM with 2 sources at X=200m
— Gravityin 2 boreholes per line and surf at X=200m
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« 3D Testing
o Use all 100 Sims and 35 Time steps

w

CO, Saturation 28 o For EM and Gravity use 3 monitoring wells
VB ano!tVs Je shown to left for borehole sources/data
ensity

Resistivity - - All models/data to be uploaded to EDX
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Task 2 Data : Kimberlina 1.2 Model/Data Creation
Time Lapse Calc. Geophysical Data (Year 20- Year 0)
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Task 2 Data : Kimberlina 1.2 Model/Data Creation

Crea’rion of Kimberlina 1.2 MW?1 Pre-Injection Logs MWl Logs after 20 Years of Injection
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Task 2 Data : Kimberlina 1.2 Model/Data Creation

High-resolution micro-CT images (1 voxel = 1.4 microns)

Low resolution , i
medical CT images High resolution Micro-CT scanner

industrial CT images with core holder
» Core to pore scale characterization underway of Round Mountain Well #1 (3500 -3900’)

» scCO, saturation tests in micro-CT scanner Completed
« Two zones initially tested too low permeability to perform scCQO, injection
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Task 2 Data : Status of ‘Bell Creek’ Data Sharing Agreement

* Three iterations so far....

o |Inifial concept was to allow access to anyone who clicked a button acknowledging
that they agree to the terms and conditions associated with use of the data. The EERC
compiled an initial draft of this language and shared it with Denbury for review.

o Denbury requested a more in-depth agreement requiring that each party sign the
agreement prior to accessing the data. The EERC worked with Denbury to prepare a
new agreement.

o Due to concerns raised by NETL and several universities (primarily over the
indemnification language in the document), NETL prepared a new agreement based
on their standard NDA which would cover any entities subcontracted by NETL (i.e. -
universities). Denbury has agreed to this agreement; however, there was no language
covering other national labs.

« Currently, NETL is reaching out to the other national labs to determine how
to best incorporate them into the agreement. Once that language is
incorporated, the agreement will be provided to Denbury for review.




Pore-to-Well Scale Efforts

 Four pore to core scale experimental data sets (CT to k., CT plus acoustic,
NMR measurements of saturation, and thin section/2D image analyses) to
create a robust set of data to upscale to well-scale properties.

 Two methods being evaluated to go from centimeters to meters

* Leveraging uvnique laboratory facilities to capture data that would not
typically be available. ML to understand what features of pore to core
scale properties could be further utilized to constrain and improve models
of saturation evolution in injection reservoirs

o Efforts for site core characterization distilled down to a porosity, permeability, and
maybe some heterogeneity.




__Pore Scale Isolation & Core Flow

With Medical CT scanner

b @ s COZBRA

COZBRA  Home About
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« scCO,/brine relative permeability
measurements through the samples that

have had pore scale imaging performed —
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« And porting to core scale simulations
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Flow Rate Q (ml/min) Flow Test Saturation Profile
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Pore-scale Imaging Experimental Sefu Psucorenmagmgscale,

Schematic and photograph of the CT + ultrasonic measurement setup at PSU
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Nuclear Magnetic Resonance Results: Oil-Brine + CO2
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Upscaling Pore Features to Well Scale | |
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Reservoir Simulation
Reservoir Fluid Analysis Fluid Velocity
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Rock Typing to Upscale Flow Properties
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Upscaling Saturation Functions from to Meter Scale

Petroph.Prop. Library
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Task 2 Well-to-Field Scale Imaging / Visualization
Stochastic Neural-Net Workflow

Multiple Simulations of

Multiple realizations of Predicted Reservoir Er—
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CO2 Saturation & Uncertainty LBL
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Task 2 Well-to-Field Scale Imaging / Visualization
2D Inversion-Net Example (LANL Approach)

Kimberlina GCS Model

Deep Learning Seismic Imaging with Uncertainty

ML Derived Vp Image

ML Derived Estimate of Standard Deviation
00 0.5

0.5

e =1
N w
km/m

Improved resolution and fewer artifacts compared to traditionalseismic full
waveforminversion (see image to left)
ML derived estimates of uncertaintyin conjunction with Vp image




Task 2 Well-to-Field Scale Imaging / Visualization
2D Inversion-Net Example (LANL Approach)

Kimberlina GCS
Model (3D)

Test Results on

Kimberlina GCS ) ]
Kimberlina Data

Model (2D)

Qili Zeng, Shihang Feng, Brendt
Wohlberg, and Youzuo Lin,
‘InversionNet3D: Efficient and
Scalable Learning for 3D Full
Waveform Inversion,” pre-print
available in arXiv, 2021 (also Under
Review in IEEE Transactions on
Geoscience and Remote Sensing).

InversionNet3D

Physics-based
Inversion
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Task 2 Well-to-Field Scale Imaging / Visualization
2D Stochastic U-Net Example (LBL Approach)

Kimberlina GCS Model
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Deep Learning Stochastic CO2 Imaging/ Visualization
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82 * Providing CO, saturationimages and uncertainty estimatesin real time.

:,8 * Improved resolution and fewer artifacts comparedto traditionalseismic full
26 waveforminversion (see image to left).
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Task 2 Well-to-Field Scale Imaging / Visualization
3D Statistical Physics Based Inversion (CSM)

Time-lapse
gravitydata |
U Clustering
2500 0 2500 5000 inversion i
Easting (m) 3125
£
Time-lapse & A
215 Easting {m) 1750 2500
CSEM data 2
; 10 ME CO; plume growth
% 8_ 0.00- « Nochange
g7’ ()] x  Cluster centers
= 0 250 500 750 1000 1250 1500 1750 2000 % —0.01-
Distance from well, m c
. . . . E —-0.02-
« Jointly invert time-lapse geophysical survey data o
> Controlled-source electromagnetic data 2 _0.03- -
o Surface/borehole gravity data g) s
—0.04 - o
» Clustering identifies regions of change in conductivity and density ~0.3 -0.2 ~0.1 0.0

: . . . Conductivity change, S/m '
« Combine with petrophysical model to convert to CO, saturation changes
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Task 2 Well-to-Field Scale Imaging / Visualization

Behura & Prasad, CSM
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e Well-log resolution result

e Applicable to other attributes

e Apply to any field with wells

e Works with wells of any geometry
e Hi-resolution poro-perm fields

P8 wertRMEv ol Note: Testing of a ‘CGAINS’ ML algorithm for downscaling was shown by CSM 2 =
I,\ql E’ 5 A
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Questions?
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Thank you!

dlalumbaugh@Ilbl.gov
dustin.crandall@netl.doe.gov
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