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SMART Initiative

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

@ Real-Time Visualization
“CT' forthe Subsurface

Rapid Prediction
Virtual Learning

Real-Time Forecasting
“Advanced ControlRoom”

Transforming decisions through clear vision of the present and future subsurface.
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Confluence of Data, Computational Capability, and

@ Real-Time Visualization
“CT” for the Subsurface “Advanced Control Room”
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SMART Initiative
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“Proof of Concept” “Development and Validation”
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@ The rise of intelligent oil fields
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Making Better Decisions

Transforming decisions through clear vision of the present and future subsurface.

Decision-makers

Project Engineers
Regulators
High-level Executives

Landowners/Public

Phases

Site/Field Selection
Permitting
Development
Operations

Closure

Questions

Is the project safe?

 Willitleak, and if so,
where?

 Will it cause induced
seismicity?
Where is the CO, now?

Where should | locate
the wells?




Is the project safe?

Rapid detection of possible hazards reduces projectrisk

Input: Field data in near real-time Implementation
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Where is the CO, now?

Quick updating of CO, plume location addresses many questions

A. Modeled B. Core Scale C. Synthetic Well Log D. Synthetic Geophysical
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Comprehensive synthetic data sets for realistic site
across several scales
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Integrating simvulations and data to inform decisions

Reservoir simulations
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* Fully parallel
« Time: one forward model run

« Considers various uncertainty
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Online learning

* ML techniques (dimension
reduction and BNN learning)
« Time: mins and robust solution

Deploy
Observations

)\ 4

Trained ML model

Forecast with
uncertainty

Syear

10year

Deploy an automated and
real-time forecast framework
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Addressing risk and uncertainty

Overpressure head error statistics and loss function during training (Ns=100,000)
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Virtual Learning Tool

Can we rapidly develop experience among CCS stakeholders to facilitate rapid & safe deployment
of large-scale geologic CO, storage?*

Interactively gain

File

Ch e L intuitive understanding
Enable a VirtualLearning e i o ™y e o of CO, storage site
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« enabling non-experts to
explore and learn how the
systems work
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Work with operators to enable real-time predictions

MSEEL DOE Field Site
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DOE NAMES PHASE 1 WINNERS IN SMART VISUALIZATION PLATFORM

PRIZE CHALLENGE

August 02, 2021

-

» Red Volta Visualization Platform. Submitted by Charles Tanzini and Trevor Nicholson of Raleigh, North Carolina. The de:.r;el_dpers rep_n_rt that the design and
architecture of their platform enables a scalable, multi-user and cross-platform solution. Red Volta's design allows it to be deployed in standalone mode on &
dedicated workstation or as a web application that can be used remotely by operators in the field.

» Subsurface XR. Submitted by Alexander Zimmerman, an American student studying geo-resources and materials engineering in Germany. Subsurface XR will
apply state-of-the-art game engine and mixed reality technology to provide users with an app they can run on any device to visualize and intuitively interact
with geoscientific datasets and models in 3D.

» GeoDeck. Submitted by PetrolLern LLC of Brookhaven, Georgia. GeoDeck is a web-based application. GeoDeck will make the interaction between scientific
variables and their spatial and temporal dimensions straightforward and intuitive, using virtual reality (VR) and augmented reality (AR). Developers claim the
ultimate immersive experience is only possible by means of VR and AR. The software is designed to accommodate extended reality integration on the web.

» RocVision. Submitted by lllinois Rocstar LLC of Champaign, lllinois. The RocVision subsurface visualization system is an advanced 3D platform for exploring
subsurface data. RocVision allows a user to explore 3D spatial and temporal data with methods used by geoscientists. The final RocVision product will
support geoscience workflows in subsurface science while providing advanced 3D, 2D and data processing features, using VR and AR.
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https://edx.netl.doe.gov/smart/

Summary

* Proof of Concept Phase nearly complete (December)

* Developing transformational approaches to enable real-time visualization,
real-time forecasting, and virtual learning

* Focus is NOT on building new models to replace reservoir simulators at
early project stages, but rather to create tools that use existing
models/knowledge with data to enable better decisions

« Addressing issues:

o data formatting and standardizaftion,
o Infegrating multiple data streams,
o testing and fraining new algorithms for specific use

* Phase Il will focus on site-specific development and validation of SMART
tools and approaches, in partnership with operators and other users
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Upcoming presentations

» August Carbon Management and Oil and Gas Program
Review Meetings

« Four presentations on SMART Carbon Management (Tasks 2-5) on the
afternoon of Friday, August 6, from 1:40-3:10 pm ET

» Two presentations on SMART Oil and Gas (Tasks 6-7) on Mondayy,
August 23 at 4:20-5:00 pm ET.




Thank You!

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisionsin Subsurface Applications
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Transforming decisions through clear vision of the present and future subsurface.
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Questions?

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisionsin Subsurface Applications
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