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Program Overview
Goals and Objectives

• The primary objective is to develop a framework to boost the reliability of 
characterization and prediction of the state of stress in the overburden and 
underburden (including the basement) in CO2 storage reservoirs using novel 
machine learning and integrated geomechanics and geophysical methods.

• We use field data and models developed by the Southwest Regional Partnership on 
Carbon Sequestration (SWP) for the Farnsworth Unit (FWU), a CO2 enhanced oil 
recovery (EOR) project being conducted by Perdure in Ochiltree County, Texas, to 
verify the improved capabilities of our methods.

• The integration methodology is an adaptation of industry accepted practices for 
calibration of flow simulation models to coupled geomechanical models for improved 
stress prediction. Computational challenges will be overcome through application of 
Machine Learning.



• Demonstrated at the Farnsworth 

Unit ongoing CO2 EOR 

development:

Discovered 1956

Primary depletion  until~ 1965

Waterflood until ~2010

CO2 WAG EOR Started 2010

• 2 anthropogenic CO2 sources

• Extensive characterization dataset 

previously was acquired, and 

modeling performed by the SWP 

partnership

Technology/Site Selection 
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Technical Approach/Project Scope
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• The final outcome of this work will be a 

methodology for integration of multi-

disciplinary data to reduce uncertainty in 

estimation of stress changes in the storage 

complex and underburden.

• Significant project risks include stress-

sensitivity of rock behavior under 

anticipated effective stress changes, and 

microseismic data characteristics.

• The robust characterization dataset which 

includes extensive geological, geophysical, 

and geomechanical, and seismological 

data provide opportunities for technical risk 

mitigation through alternative integration 

strategies. 



Technical Approach/Project Scope
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Task/ Milestone Title Planned

Completion
Status

Subtask

1 Project Management Plan 1/31/2018 PMP file

1 Kickoff Meeting 11/31/18 Completed

2.2 1D MEM Model 2/28/2019 Completed

2.4 VSP Elastic Inversion 10/31/2019 Completed

2.6 VSP Stress Estimation 2/28/2019 Completed

3 Microseismic Analysis 11/31/2020 Ongoing

4 3D MEM Model 9/30/2019 Completed

5 Hydrodynamic History Matching 3/31/2020 Completed

6
Evaluation of one-way and two-

way coupling process
8/30/2020 Completed

7.1
Stress Objective function

formulation
7/30/2020 Completed

7.4/7.5
Completion of VSP - history

matching
5/31/2021 Completed

7.4/7.5
Microseismic- Geomechanics

history match
9/30/2022 Ongoing

8 Forecasting pressure and stress 8/30/2021 Ongoing



What is an Earth model? It can be 1D, 2D, 

3D, and 4D
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Morrow B petrophysics
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Horizontal stress model



Horizontal stress model –Kansas City 

Formation
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Time-lapse 3D (4D) VSP Monitoring

3D VSP Data Acquisition Geometry



Time-Lapse Seismic Data and CO2 Injection

• 3D-1C surface seismic data: Nov 2013

• 3D-3C baseline VSP data : February 2014

• 3D-3C monitor1 VSP data : January 2015

• 3D-3C monitor2 VSP data : November 2016

• 3D-3C monitor3 VSP data : December 2017

• Base Line --> Monitor 1: Injected CO2= 33,070.25 tons

• Base Line --> Monitor 2: Injected CO2= 76,597.14  tons

• Base Line --> Monitor 3: Injected CO2= 94,286.38 tons

• Monitor 1 --> Monitor 2: Injected CO2 = 43,526.89  tons

• Monitor 2-->Monitor 3: Injected CO2   = 17,689.24  tons



Time-lapse Vp & Vs between Monitor 1 and Baseline

ΔVp = -10 m/s 

ΔVs  = -10 m/s



Time-lapse Vp & Vs between Monitor 2 and Baseline

ΔVp = -10 m/s 

ΔVs  = -10 m/s



Time-lapse Vp & Vs between Monitor 3 and Baseline

ΔVp = -10 m/s 

ΔVs  = -10 m/s



Microseismic Monitoring
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3D Location results
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• high-frequency microseismic events (150--350 Hz), close to the borehole

• low-frequency microseismic events (10—50 Hz), distributed above, within, and below the

reservoir. They also form a SW-NE distribution.



Seismic lines 

perpendicular 

to axis of 

microseismic 

event azimuth 

(NE-SW)
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Location Results for High-frequency Signals (150-350 Hz)
clustered in two layers: the upper layer corresponds to a highly-anisotropic layer from well

logging measurements.
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Number of Events

Number of Events



Magnitudes of Microseismic Events

23Low-frequency events (Feb.-July, 2020)High-frequency events (July, 2019-Feb. 2020)



Novel adaptive moment-tensor inversion using single borehole data: 

Synthetic data results



Adaptive moment-tensor inversion:

Preliminary results of borehole microseismic data

Diamond CLVD-ISO plots (Hudson diagrams)

show positive CLVD:  Fracture opening



Adaptive moment-tensor inversion:

Preliminary result of surface microseismic data

Diamond CLVD-ISO plot (Hudson diagram)

shows positive CLVD:  Fracture opening



27

• The geological model developed by SWP has 

been updated with structural and stratigraphic 

reinterpretation of newly depth imaged seismic 

data.

• The updated model extends from ground 

surface to below the injection zone (Morrow B 

reservoir).

• Petrophysical properties of the reservoir and 

caprock have been updated through 

integration of geophysical logs,  core, and 

seismic elastic inversion products.

• Elastic properties of the reservoir, 

underburden, and overburden have been 

updated through integration of well data based 

1-D Mechanical Earth Models (MEM) derived 

from geophysical logs and core analysis.

Geological and Geomechanical 

Static Modeling



28

• Primary/Secondary (pressure depletion/waterflood) 

and tertiary (CO2 WAG) periods were history 

matched using proxy modeling and machine 

learning optimization.

• Separate proxy models were developed for 

primary/secondary and CO2 WAG development 

periods each using 100 full physics runs to train 

and verify proxy models.

• Particle swarm optimization was employed and 

coupled with the proxy models to minimize the 

history matching error

• Optimized reservoir parameters were verified in full 

physics simulations.

Hydrodynamic Flow Calibration



VSP Integration Workflow 

Modelled Seismic Velocity: 
Based on the Principle of Superposition

𝒅𝑽𝒎𝒐𝒏𝒎𝒐𝒅𝒆𝒍𝒆𝒅 = 𝒅𝑽𝒎𝒐𝒏𝒇𝒍𝒖𝒊𝒅 + 𝒅𝑽𝒎𝒐𝒏𝒔𝒕𝒓𝒆𝒔𝒔 , 

dV= dVp , dVs

Seismic Velocity Mismatch: 

𝒅𝑽𝒎𝒐𝒏𝒎𝒊𝒔𝒎𝒂𝒕𝒄𝒉 = 𝒅𝑽𝒎𝒐𝒏𝒎𝒐𝒅𝒆𝒍𝒍𝒆𝒅 − 𝒅𝑽𝒎𝒐𝒏𝒐𝒃𝒔 , 

dV= dVp , dVs

VSP Objective Function Formulation: 

Task 7.3
Summation of all six(6) seismic velocity 

mismatches 

𝑽𝑺𝑷 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 =෍𝒅𝑽𝒎𝒐𝒏

dV= dVp , dVs mon= 1,2,3

Goal: Minimization of the VSP Objective Function
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Geomechanical Calibration: Parameter Sensitivities
Task 7.2 and 7.3

• Four Independent variables control both the fluid 

substitution and mean effective stress impacts on 

shear and compressional seismic velocity changes

• P-velocity – Mean Effective Stress Ratio

• S-velocity – Mean Effective Stress Ratio

• Reflects the larger influence of mean effective stress 

changes on the Total Objective Function.   

• Gsmean and Ksmean impacts 

• Fluid substitution: Saturated Bulk modulus and Shear 

Modulus

• Mean effective stress through the linear elastic 

assumption. 

• Bulk Modulus incorporates the effect of fluid 

compressibility and saturation distribution. Shear 

modulus is unchanged.
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Regression Analysis:  Artificial Neural Network
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 Artificial Neural Networks (ANN) are inspired by the 

structure of the Human Brain. 

 Comprised of layers of neurons that form the 

core processing units of the ANN

 Weights are assigned at each layer prior to 

neuron activation throughout the network to 

generate the output(s)

 Utilize the Backpropagation algorithm 

(supervised algorithm) to train ANN and update 

the weights until the error between the 

computed and simulated outputs are 

minimized.

 Subdivide Inputs ( randomly determined) 

 Training (70%), Validation (15%), Blind Testing 

(15%)

 Single hidden layer comprised of 15 neurons



Preliminary Geomechanical Calibration Task 7.4 

• Shear and Compressional 

Seismic velocity Mismatches 

at Monitor 2 

• The cooler colors on the 

“Base Case” parameters on 

the left show much higher 

mismatches than the 

optimized values on the 

right.   
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Accomplishments to Date

• We have rebuilt new initial anisotropic velocity models by upscaling well logs using 

the Schoenberg-Muir method.

• Have determined the HTI positions and parameters besides VTI parameters in most 

areas.

• The depth interval of observed high-frequency microseismicity corresponds with an 

interval of strong stress anisotropy in borehole geomechanical analysis. 

• Continue to detect and locate hundreds of microseismic events from borehole 

geophone array and surface microseismic stations (seismometers).

• Estimated event magnitudes and started to perform moment tensor inversion.
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Accomplishments to Date

• Completed final geological and geomechanical static models for hydrodynamic flow 

and coupled simulations

• Completed final production history matching modeling utilizing machine learning 

based workflow

• Completed evaluation of 1-way and 2-way coupling options for stress calibration 

process

• Completed machine learning based VSP-Stress calibration process

• Completed a forecast modeling post VSP-Stress History Match

• Developing a framework for Geomechanics- Microseismic Calibration process
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Summary: Key Findings/ Lessons Learned 

• Detected both high- and low-frequency microseismic events distributed in different regions. 

• Low-frequency microseismic events occurred above, within, and below Morrow B, the CO2 

injection formation.

• Moment magnitudes of low-frequency microseismic events are mostly around -0.5.

• Analyzing borehole microseismic data is challenging because of strong borehole waves, noises, 

and a short borehole sensor array. Machine learning denoising is ongoing.

• Moment tensor inversion using single borehole array is challenging but feasible using our novel 

adaptive moment tensor inversion algorithm.

• Microseismic event location, moment magnitudes, and moment tensors will be used for 

geomechanical stress modeling and prediction.
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Summary: Key Findings/ Lessons Learned 

• The far-field stresses are aggressive enough to cause significant mechanical deformation and 

variations in velocities at three different scales (core – log – seismic).

• The differential horizontal stresses are large enough to cause mechanical breakouts and dipole 

velocity anisotropy.

• The stress changes due to fluid injection/removal and fluid properties can cause enough 

observable changes in timelapse seismic signature.

• The quality of initial anisotropic parameters plays an important role in convergence rates and 

reliability of anisotropic inversion.

• Machine learning based optimization workflow has been successfully developed and utilized to 

calibrate VSP-Stress mismatch.



Next Steps
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Thank you for your attention!
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Organization Chart 



Gantt Chart


