Electrochemically-Driven Carbon Dioxide Separation

DE-FE0031955

Yushan Yan
University of Delaware

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Management and Natural Gas & Oil Research Project Review Meeting
Virtual Meetings August 18-19, 2021

Project Overview

Funding: \$800,000 federal + \$200,000 cost share

Period of Performance: 10/1/2020 - 3/31/2022

Participants: University of Delaware

Project Objectives:

- Develop electrochemically-driven CO₂ separator with
 0.4 mol/m²-hr air capture at <235 kJ/mol_{CO2} (1.5 MWh/t)
- Characterize poly(aryl piperidinium) (PAP) properties to support future development

Symmetrical electrodes are used to charge and discharge:

Nickel(II) hydroxide **anode**/ Nickel(III) oxy-hydroxide **cathode**

OH⁻ is produced to convert CO_2 in air to CO_3^{-2}/HCO_3^{-1} and shuttle across the membrane where it is concentrated for release as high purity CO_2 product.

Air is fed at ambient conditions.

Electrodes are run at constant current until the NiOOH cathode is consumed and no more OH⁻ is produced

Voltage supplied needs to overcome ohmic resistance, pH differential, and cell voltage.

Continuous operation.

Previous work showed efficacy of this concept.

Proof of concept accumulation of CO₂ at the Anode and removal of CO₂ from the cathode prompting development of this project.

Advantages

Hydroxide needed for CO₂ capture is generated in-situ.

Powered by renewable energy instead of fossil fuel sources.

No expensive thermal or pressure swings required to separate out CO₂

Disadvantages

Moisture management in the cell may be needed to maintain carbonate conductivity and could be difficult in some locations.

Capital cost of electrochemical system.

Technical Approach-3 core tasks

Task 4: Membrane Electrode Assembly Testing Determine best method of electrode production.

Create a test station and perform full cell experiments.

Task 3: Polymer/Membrane Characterization

Measure fundamental kinetics and transport under different %RH and pH conditions.

Enables modeling and full cell optimization that can be constructed in future studies.

Task 2: Membrane Fabrication

Design process for building a membrane with high in-plane, air-flow properties.

Technical Approach-3 core tasks

Task 4: Membrane Electrode Assembly Testing June 2021- Improved electro-precipitation of Ni(OH)₂ onto Nickel foam electrodes.

Aug. 2021-Finalizing cell test station.

Task 3: Polymer/Membrane Characterization

July 2021 - Conductivity tests underway highlighting strong relationship to humidity.

Aug. 2021- In situ pH monitoring being developed.

Task 2: Membrane Fabrication

Work to be started.

Progress and Current Status

Task 4: Membrane

Electrode Assembly Testing

Task 4.1 Electrode Fabrication

Task 4.2 Design of Test Fixture

Task 4.3 EDCS Testing

Task 3: Polymer/Membrane Characterization

Task 3 Membrane Test Bench

Task 3.1 Conductivity

Task 3.2 Carbonation Kinetics and Equilibrium

Task 4.1 Electrode Fabrication

There are several ways to make $Ni(OH)_2$.

Chose an electro-precipitation method in a 3electrode cell to control the amount and structure of Ni(OH)₂ applied to a nickel foam substrate.

Total current during precipitation determines amount deposited, the structure is affected by the current density during precipitation.

Task 4.1 Electrode Fabrication Improvement

Sample produced at 20 mA cm⁻² and an initially cycled at 5 mA cm⁻² showed significant physical degradation

Sample produced at 10 mA cm⁻² an initially cycled at 5 mA cm⁻² showed improved stability and significantly improved performance.

Task 4.3 EDCS Testing-Half Cell

Preliminary Transfer of CO₂ across PAP membrane with a Ni(OH)₂ and Pt/H₂ half cells.

CO₂ is measured at the outlet of the Ni(OH)₂ electrode half of the cell

Representative charge and discharge Cycle. Future work to optimize charge duration and prevention of oxygen evolution.

Starting point for moving to full cell work.

12

Task 4.2 Design of Test Fixture

DAC test station with capabilities of switching types of gas and polarity in conjunction with electrode charge and discharge cycles.

Top Layer - Flow Control

Second Layer - RH% Control, Gas Mixing, DAC Cell

Third Layer - Condensate Control

Bottom Layer – Central Control Interface

Task 3 Membrane Test Fixture

Conductivity is a key characterization parameter. It affects the feasibility and power consumption of the device.

This 4-electrode setup allows for characterization of conductivity.

Circled in red is the cell with the 4electrode setup, surrounded by controls for humidity, temperature, CO₂ concentration, and flow rates.

Task 3 Membrane Test Fixture

4-electrode measurement eliminates effect from electrode polarization to give true ionic conductivity

$$\kappa = \frac{l_{\rm b}}{Rw\delta} \begin{array}{cc} R & \text{resistance} \\ w & \text{width of membrane} \\ \delta & \text{thickness of membrane} \\ l_{\rm b} & \text{distance of inner electrodes} \end{array}$$

Task 3.1 Membrane Conductivity

Conductivity shown to be strongly dependent on %RH.

Known difference in conductivity between HCO₃⁻ and OH⁻.

Task 3.2 Carbonation Process

Monitored membrane carbonation from OH⁻ to HCO₃⁻ at two different temperatures in CO₂ enriched stream.

Intend to extract kinetic and transport parameters from this methodology to be used in future modeling work.

Plans for future

Current Project

After this project

Task 4.3 Full Cell Testing

Optimize Cell Performance

Task 2.3 Structured Membrane Production

Scale up study with stack system

Task 5 Energy evaluation

Capital cost study for commercialization

Summary Slide

Core electrochemical methodology works.

Provides an alternative path to prevailing amine-based systems that require temperature and/or pressure swings.

Potential for both direct air capture and point source.

Appendix

Team

Yushan Yan (PI)

Brian Setzler (co-PI)

Teng Wang

Thank you to our many colleagues whose foundational work made this project possible:

Junhua Wang Rohan Razdan Yun Zhao Catherine Weiss

Stevi Matz Lin Shi David Yan Junwu Xiao

Santiago Rojas-Carbonell

Thank you to Versogen for supplying PAP the anion exchange membrane and ionomer used for developing this project.

Nick Oliveira

James Buchen

Gantt Chart

• Highlighted sections is actual completion to date. Number of months are shown since start of project. Resource restrictions prevented starting of project for 6 months.

CO₂ Alkaline Equilibrium

Acid-base equilibria:

$$HCO_3^- + OH^- \rightleftharpoons CO_3^{2-}$$

 $H_2CO_3 + OH^- \rightleftharpoons H_2O + HCO_3^-$

Carbon dioxide hydration:

$$CO_{2(g)} \rightleftharpoons CO_{2(aq)}$$
 $CO_{2(aq)} + H_2O \rightleftharpoons H_2CO_3$
 $CO_{2(aq)} + OH^- \rightleftharpoons HCO_3^-$

Electrode Production Setup

Lower current densities produced more physically stable electrodes. (Right- Case of lost active material on high current density sample 20mA cm⁻². This is not appreciably observed at lower current densities < 10mA cm⁻²)

Higher total current applied to electrodes produced higher capacity electrodes.

The highest capacity sample produced thus far was with 10mA cm⁻² over 2 hours.

Electrode cycling in 1 M KOH

Charge and Discharge curves of best charge capacity Ni(OH)₂ Electrode

Cut off electrode charge before oxygen evolution plateau.

Produced stable discharge capacities with 95.8±0.5% columbic efficiency.

Only a modest 6% drop in capacity of compared with the hold in Oxygen evolution state.

Equipment PFD

