

Workshop on CO₂ Mineralization for ENERGY RELEVANT MINERAL EXTRACTION

Can our production of metals lead to negative emissions?

Held July 13 and 15, 2021

Topic Introduction

Geological mineralization as a route to Carbon Dioxide Removal and liberation of energy-essential minerals

- Why?
 - The US has vast deposits of **mafic and ultramafic** that is capable of sequestering CO_2
 - These deposits contain minerals critical to our economy at concentrations below current commercial interest that can be more efficiently extracted via the addition of CO₂. e.g.: Nickel, Cobalt, Chrome

It takes a tribe to surround a topic

3

Some old NEWS for this crowd - All paths to 2°C go through zero

National Academy of Sciences. Negative Emissions Technologies and Reliable Sequestration:

A Research Agenda. 2019. p. 3

But you may not have considered...

Sustainable Energy is Powered by Minerals

1	Aluminum	10	Manganese
2	Chromium	11	Molybdenum
3	Cobalt	12	Neodymium
4	Copper	13	Nickel
5	Graphite	14	Silver
6	Indium	15	Titanium
7	Iron	16	Vanadium
8	Lead	17	Zinc
9	Lithium		

But you may not have considered...

IEA. All rights reserved.

These metals do not come without baggage

These metals do not come without baggage

IEA. All rights reserved.

Hard Rock Science

Mafic/Ultramafic ore bodies

- Will mineralize CO₂
- Contain energy relevant metals

Olivine example at right

- Potential to mineralize 400 kg/ton
 - Based on Ca/Mg content
- If processed for the 0.7wt% nickel
 - 143 tons ore/ton of nickel
 - Mineralizing 57.2 ton CO₂/ton of Ni

1.

Table

Table 1. Chemical composition of the investigated olivine and magi

l. Chemical composition o Components	f the investigated Olivine	d olivine and magne Magnesia
Components	4 04 <i>iy</i> vine	<u>Mag</u> nesia
Sil 223	2.545.43	0.200.32
\rightarrow Af ₂ O ₃ ³	$10.88 \\ 2.55$	0.580.20
Fead	0.11 2.10.88	0.05 0.75 0.75
Tvigo	35.5711	97.50.05
Ckato	0.3 2 .16	0.020.75
Mgo	0.35.57	0.197.56
	0.17	0.24
Cr_2O_3	0.45	0.00
P_2O_5	0.00	0.00
ZrO_2	0.02	0.03
SO_3	0.00	0.00
BaO	0.00	0.00
📥 ZnO	0.08	0.08
NiO	0.89	0.09
\frown Co ₃ O ₄	0.08	0.00
CuO	0.06	0.00
Total	100.00	100.00

Metals 2018, 8, 993

Q

It's Pretty Simple Chemistry

- One just needs rock, CO₂ and perhaps a little water...
- Thermodynamically favorable (15-22 kcal/mol)
- Basically innocuous reaction products
- But...

It's Pretty Simple Chemistry

- One just needs rock, CO₂ and perhaps a little water...
- Thermodynamically favorable (15-22 kcal/mol)
- Basically innocuous reaction products
- But...

But, in the wild this is a SLOW Process

Key to the erosion process that takes mountains into molehills!

Nature's way:

- Wind, rain, ice, freeze thawing, biology and seismic events all contribute to the process
- Removes about 1 gigaton of CO₂/yr
- It takes time literal **eons** •

http://butane.chem.uiuc.edu/pshapley/Environmental/L29/2.html

Is there an Industry Big Enough to Deploy?

The global scale of mining is almost Incomprehensible

Yearly mineral production - 19 Billion tonnes Coal/limestone/aggregate dominate

Yearly mining waste produced - 50 Billion tonnes Coal/limestone/aggregate do not dominate

Production will drop but waste will increase 7 Billion tons of coal annually will stay in the ground

https://www.world-mining-data.info/wmd/downloads/PDF/WMD2020.pdf

For Mineral Extraction – 3 Stages open to CO₂ Reaction

Concept illustration from a vanadium deposit in Australia

TMT Limited Projections

- Total V_2O_5 to be mined = 225 kt
- Total ore processed = 35 Mt
- Total overburden moved = 150 Mt
 - Primarily mafic gabbro!

Inferred CO₂ Mineralization Potential

- SWAG of 1 ton $CO_2/10$ tons of gabbro
- Potential > 100 ton CO_2 /ton of V metal
- Current CO₂e emissions of V
 - +63.4 ton/ton of metal

https://amg-v.com/sustainability/

https://www.tmtlimited.com.au/geology

In-situ CO₂ Pretreatment (Incorporating in Mine Planning?)

- Basic Mine Planning
 - Drill holes to obtain core samples
 - Determine chemistry
 - Map out approach
- Combine w/Pretreatment
 - Flood the hole with CO₂ cocktail
 - Cap then allow overburden and target ore to react
 - Excavate and measure

https://www.tmtlimited.com.au/geology

Other Opportunities for Mineralization

Figure 3: Gabanintha Project - Site Layout

Let's look at Nickel

Current Global Ni

- Annual production = 2.5 million tons
- [Ni] between 0.5 and 2.0%
- Emit >50 million tons of CO_2e/yr
- Projected global demand for EV's
 - Annual production = 12 million tons
 - Unabated $CO_2e > 250$ million tons
 - [Ni] < 1.0%
- If wishes do come true
 - Electrify to abate existing process
 - Mineralize > 500 million tons

So, we held a Workshop: Mineralization and Enhanced Mineral Recovery

Who shows interest in the CO2/Metal Nexus?

100+ External Registrants

- >100 attendees first day, >90 second day
- Industry, finance, academia, labs
- NRCan, NRC, CNRS
- ► 6 Speakers
- Breakouts around process
 - Thermochemical/Electrochemical
 - Biochemical/Phytomining
- 22 Participant fast intros or pitches at the end
- Many follow-up one on one calls

What did we hear? An aspiration to integrate across mining process

CHANGING WHAT'S POSSIBLE

August 19, 2021

21

mturenne@fpxnickel.com

What did we hear?

CHANGING WHAT'S POSSIBLE

Electrochemistry, biochemistry, mechanochemistry approaches

RESEARCH

We have a number of research projects in the lab, from understanding how microbes adapt to the extreme starvation of caves, the evolution of antibiotics and even the rock-eating microbes that form caves.

Hazel Barton, U Akron

What did we learn?

Great Interest in the concept!

- Major mining companies
- Investment community
- Carbon capture companies
- Lots of ideas!
 - Many approaches that could work
 - Mineralization may lead to lower mining cost and improve yield
- Impure CO₂ will be a benefit
 - H₂O facilitates the reaction
 - NOx, SOx and O_2 can be a plus

Challenges to be met

Chemistry and Engineering

- Major enhancement to reaction rates
- New comminution approaches
- Integration with metallurgy
- Geology/Metrology/Petrology
 - Identification of potential deposits
 - Correlation of ore structure with reactivity
- Lifecycle and TEA
 - Driving down H₂O usage
 - Impact of CO_2 credits on mine economics
 - Impact on mine waste

For: Ni, Cu, Co, Mn, V, P, Fe, Al, Mg, REE, PGM...

More carbon sequestered than emitted downstream

Quantify and monetize fast Quantified sequestration in short order

Makes money at scale

Process cost \$15-20/ton CO₂ mineralized

Additional Information

Workshop Website

- <u>https://arpa-e.energy.gov/events/co2-</u> <u>mineralization-for-in-situ-storage-and-</u> <u>ex-situ-enhanced-metals-recovery-</u> <u>workshop</u>
- Background Videos
 - <u>https://youtu.be/6EVwNm22Pc0</u>
 - <u>https://youtu.be/NBVELH40EaE</u>
 - <u>https://youtu.be/1BlhmCaDHPU</u>
 - <u>https://youtu.be/YfOuW9BG8E0</u>

