Development of Advanced Solid Sorbents for Direct Air Capture

Project Number: DE-FE0031954

Mustapha Soukri RTI International

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting

Virtual Meetings August 18-19, 2021

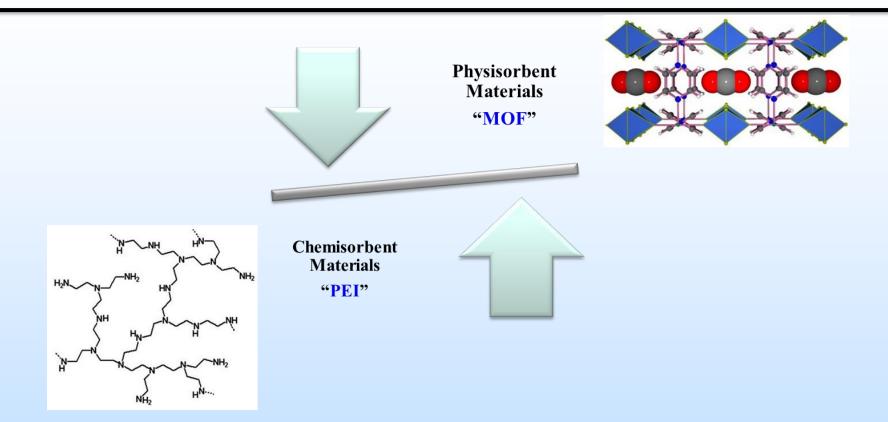
Program Overview

a. Funding: DOE:

a. \$800,000 Cost-Share: \$200,502

b. Overall Project Performance Dates:

a. 10/01/2020 - 03/31/2022

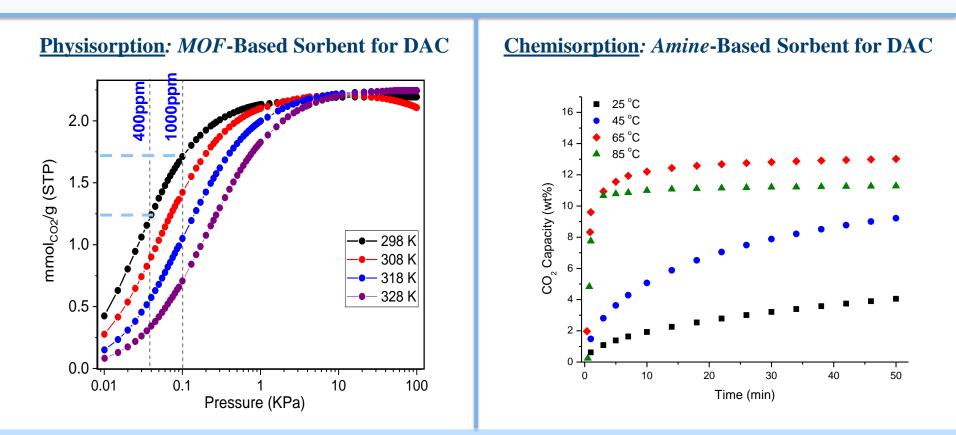

c. Project Participants:

- a. RTI International (Prime)
- b. Mohammed VI Polytechnic University (UM6P)
- c. Creare LLC.

d. Overall Project Objectives:

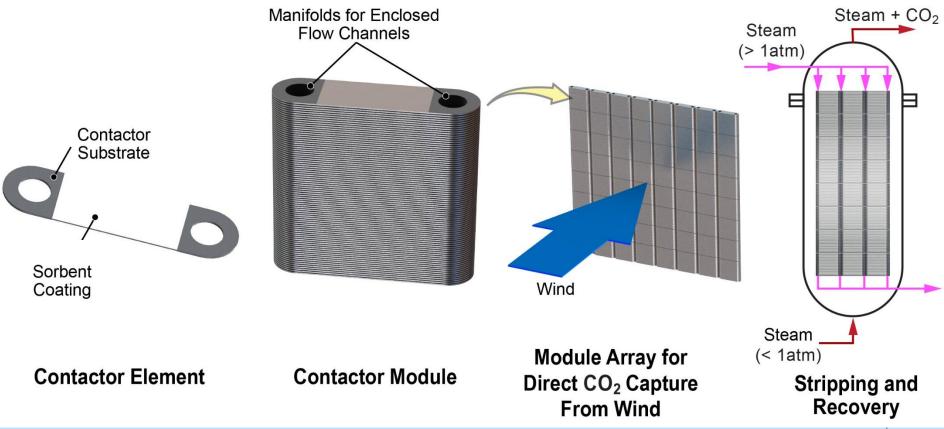
- a. Development of two novel materials: metal organic frameworks (physisorption) and amine-based dendrimers (chemisorption), for direct air capture of CO_2 .
- b. Select the best performing material based on technical merit comparison
- c. Scale-up and cost review of the selected candidate
- d. Preliminary process design

Technology Background


DAC Through Sorbent-Based Processes

- Performance under DAC conditions
- Cost & Scalability
- Contaminant's tolerance
- Long-term performance

Technology Background


The most significant technical challenge with DAC is the very low atmospheric concentration of CO_2 (currently 415 ppm), thereby requiring sorbents that bind CO_2 strongly and selectively against other components in the air (i.e., nitrogen, water, oxygen, etc.).

- **a.** Advantages: Low-cost sorbents and strongly and selectively bind CO₂
- b. Challenges: Performance under the presence of contaminants and scale-up

DAC Concept

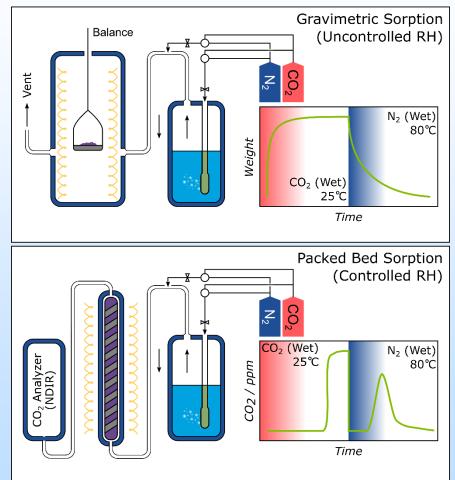
Innovative contactor and high-performance sorbent will enable a wind-driven process for DAC

Technical Approach/Project Scope

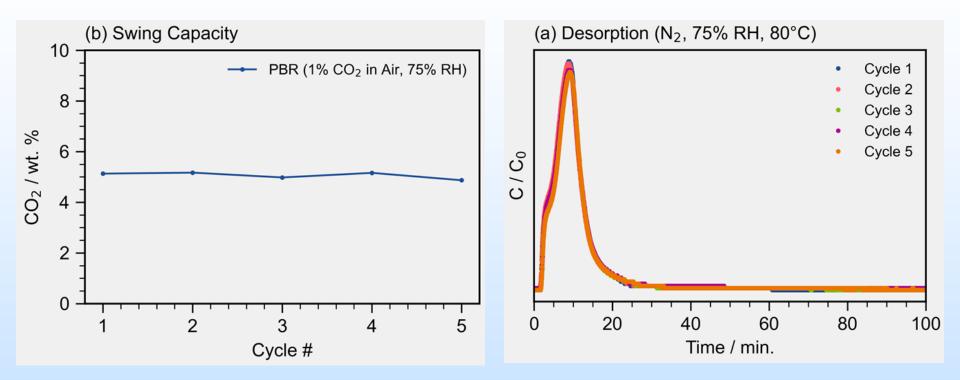
A. Experimental design and work plan

- a. Sorbents synthesis, characterization and CO_2 testing using TGA and packed bed reactor at different relative humidity's
- b. Air-gas contaminants evaluation
- c. Long-term sorbents CO₂ testing
- d. CFD simulations of the sorbents
- e. Kinetics, heat and mass transfer data for reactor design
- f. Sorbent scale-up and cost evaluation
- g. Preliminary process design

B. Key milestones

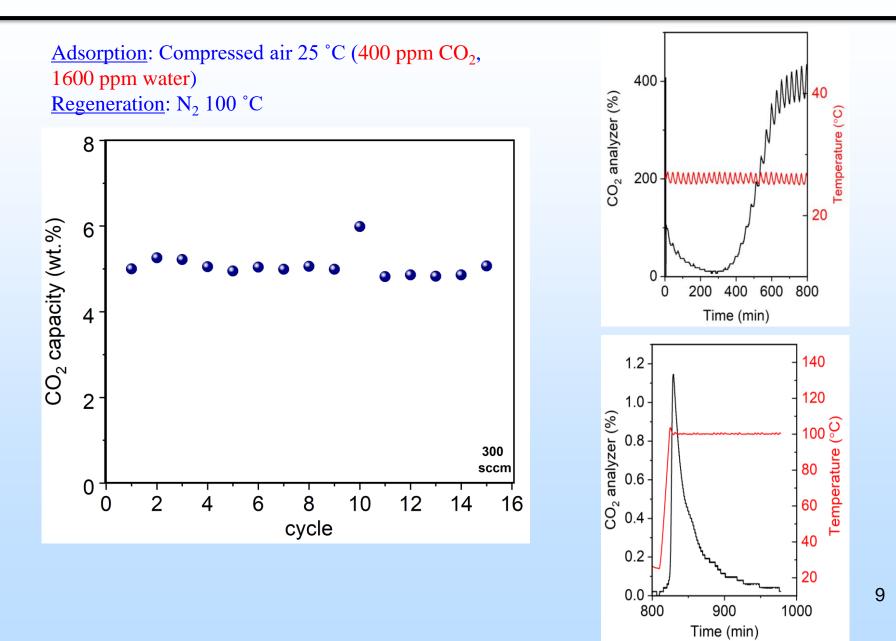

- a. Identify one MOF adsorbent and one amine adsorbent for DAC
- b. Perform CFD simulations of the MOF and amine adsorbents and validate them with experimental data
- c. Select one adsorbent for DAC
- d. Demonstrate the scale-up of selected candidate and perform cost review evaluation
- e. Perform a preliminary process design

C. Success criteria

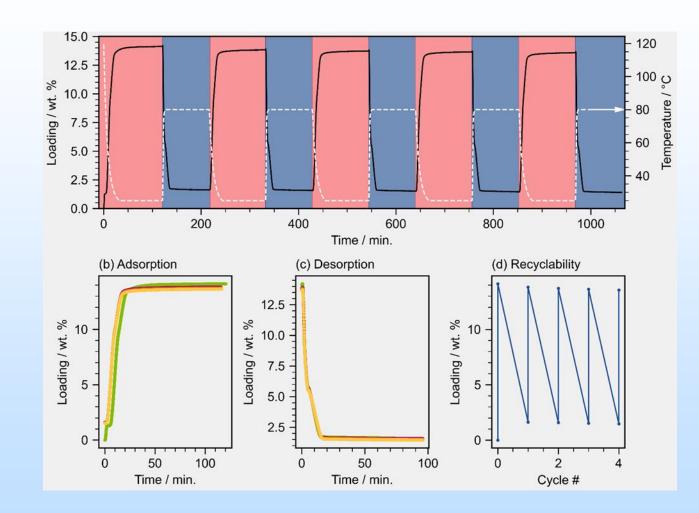

- a. Demonstrate that the two novel materials, improve DAC cost, performance, and efficiency.
- b. Demonstrate that selected adsorbent has cost-effectiveness, longevity, high CO_2 capacity, improved mass and heat transfer, and integration in a multichannel monolith-type reactor

DAC Experimental Set Up

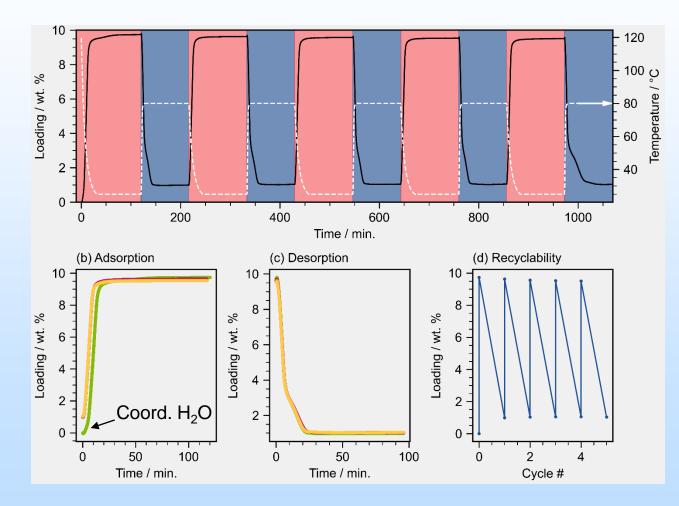
- Thermogravimetic Experiment
 - Wet or Dry conditions
 - Approx. 74% RH
 - CO_2 :H₂O uptake estimated
- Packed Bed Experiment
 - Tunable RH (75%)
 - CO_2 :H₂O uptake determinable
 - Longer Experiment (3x)
- Samples activated at 120 °C
- Adsorption at 25 °C
- Desorption at 80 °C



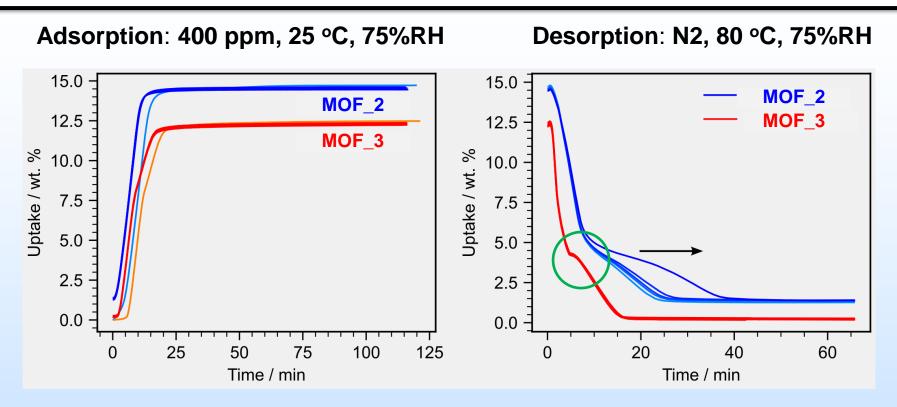
Packed Bed CO₂ Capture in MOF_1


5.1 wt% CO₂ deliverable from 1% CO₂ in Air at 75% RH

Packed Bed CO₂ Capture in MOF_1

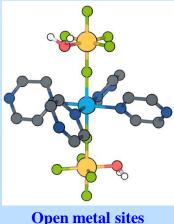

MOF_2 (1000ppm CO₂; 74% RH)

- Adsorption
 - 13.5 wt. %
 - 20 mins
- Desorption
 - 11.9 wt. %
 - 20 mins
- Swing Capacity
 - 0.89
- Cycle time
 - 40 mins



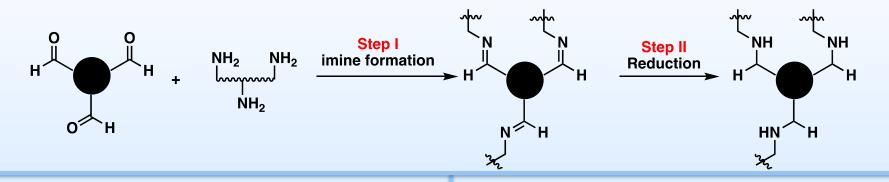
MOF_3 (1000ppm CO₂; 74% RH)

- Adsorption
 - 13.5 wt. %
 - 20 mins
- Desorption
 - 11.9 wt. %
 - 20 mins
- Swing Capacity
 - 0.89
- Cycle time
 - 40 mins



Kinetics under DAC Conditions

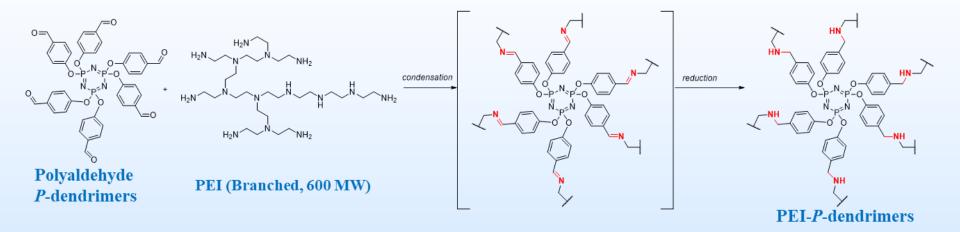
- Both materials exhibit a stepped desorption profile
- MOF_2 exhibits near complete recycling
- MOF_3 desorption time increases during cycling


We are in the process of performing DRIFT experiments for these materials to evaluated adsorption competition between water and CO₂ in N₂.

Polyamine *P***-Dendrimer Sorbent Preparation**

Two-step's synthesis (reductive amination):

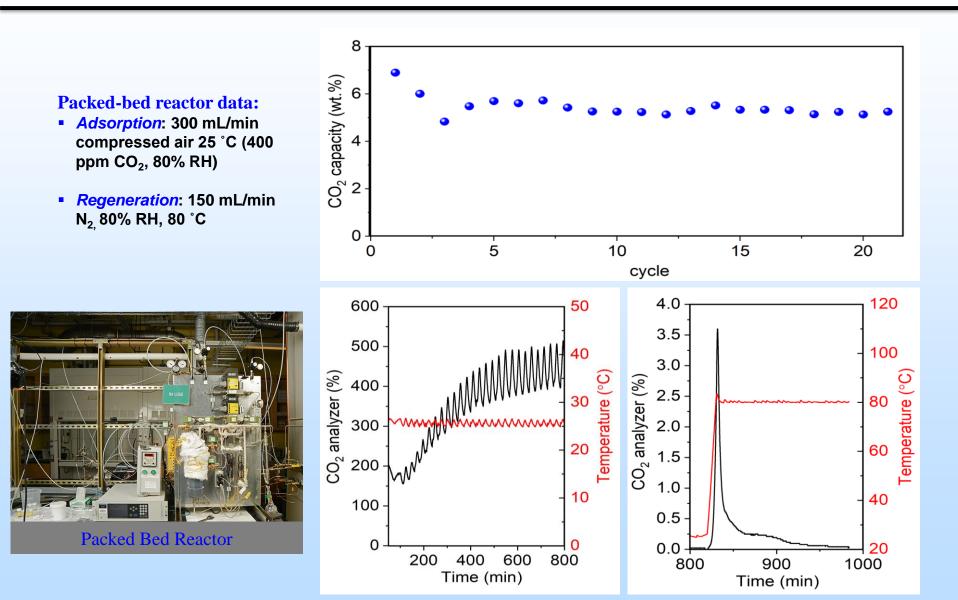
Step-1: Condensation reaction of hexa-aldehyde polyamine (imine formation) Step-2: Reduction of amine yielding amine



P-Dendrimer-based sorbents synthesis and development

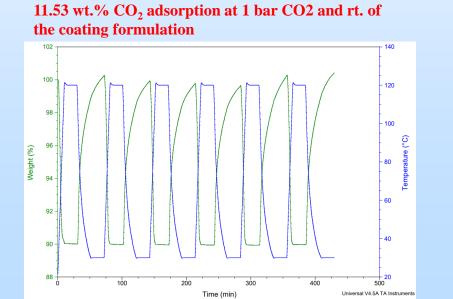
- 3 P-Dendrimers for DAC were synthesized and tested (short-chain ethylenediamine, 600 MW PEI, and 10,000 MW PEI) and the best performing sorbent was with 600 MW PEI
- Determine CO₂ swing capacity and optimal DAC conditions

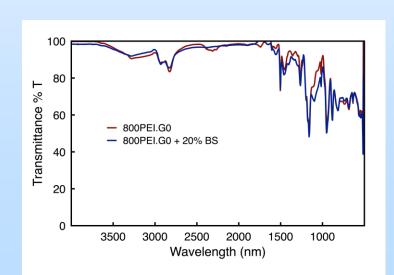
- *P*-Dendrimer-based sorbents evaluation and optimization
 - > Highest CO_2 loading at 400 ppm
 - > Best CO_2/N_2 , CO_2/H_2O selectivity
 - ► Fastest kinetics @ lowest temp.
 - ► Low regeneration temp.(e.g., 80 °C)
 - Thermal, chemical, physical stability 13


Polyamine *P***-Dendrimer Sorbent Preparation**

Sorbent has been prepared on 50 g scale in 91% yield
Optimized conditions for 1-pot, 2-step reaction:

- > 2:1 ratio of PEI to *P*-dendrimer
- Condensation solvent: THF
- Reduction solvent: THF/MeOH (2:1)
- Reductant: NaBH₄


P-Dendrimer Sorbent Performance Under DAC Conditions



P-Dendrimer Coating and Assessment

6 x 6 in. Plate

20 wt% BS + 80 wt% P-dendrimer

Plans for Future Testing & Development

Future testing/development

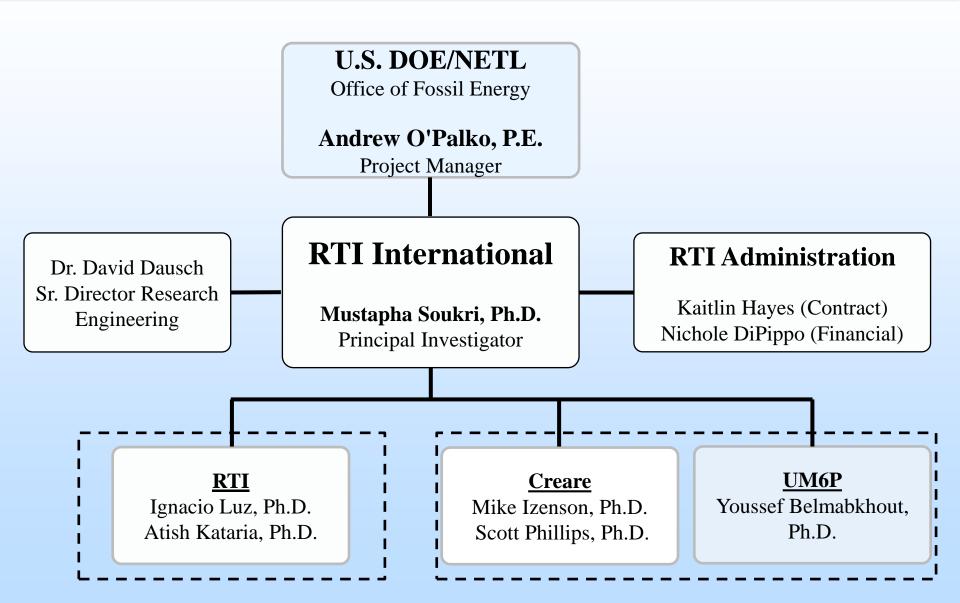
- Mass and heat transfer considerations for reactor design
- Long-term sorbents CO₂ testing
- *Air-gas contaminants evaluation
- Sorbent scale-up and cost evaluation

After this project

RTI International and its partner Creare have been selected to design, fabricate, and test a bench-scale contactor for DAC.

Summary Slide

- High-capacity, fast kinetics, robust cycling, facile/cheap synthesis procedures and easy scalability are key criteria for selecting DAC material
- Ultra-microporous fluorinated MOFs offer fast sorption kinetics to enable selective capture of CO₂ over both N₂ and H₂O (low %RH), making them prototypal for a previously unknown class of physisorbents that exhibit effective trace CO₂ capture under both dry and humid conditions.
- The P-Dendrimer amine-based sorbents were found to perform very well under DAC conditions regardless of the concentration of water vapor in air (e.g., %RH).



Novel contactor design and advanced structured material that will capture CO_2 in an energy efficient way with low pressure drop

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

Organization Chart (1)

The Roles of Team Members

Specific Project Roles	Lead Member	Support Member
 Project management and planning MOFs synthesis, characterization and CO₂ testing P-dendrimers synthesis, characterization and CO₂ testing Sorbents optimization Lab-scale reactor CO₂ testing Long-term sorbents CO₂ testing Air-gas contaminants evaluation Sorbent scale-up and cost evaluation Technology EH&S Risk Assessment Technology maturation plan 	RTI International	UM6P & Creare
 MOFs design and synthesis MOFs characterization and CO₂ testing 	UM6P	RTI International
 CFD simulations of the MOF and P-dendrimer sorbents Mass and Heat Transfer Considerations for Reactor Design Kinetics, heat and mass transfer data analysis Process design and analysis 	Creare	RTI International

Gantt Chart

Project Schedule		2021									2022				
		Q1		Q2		Q3		Q4		Q5		Q6			
Task 1.0: Project Management and Planning															
Task 2.0: Development of MOF-based CO ₂ Adsorbents															
Subtask 2.1: MOF-based sorbents synthesis and development															
Subtask 2.2: MOF-based sorbents evaluation and optimization															
Task 3.0: Development of P-Dendrimer Based Adsorbents															
Subtask 3.1: P-Dendrimer-based sorbents synthesis and development															
Subtask 3.2: P-Dendrimer-based sorbents evaluation and optimization															
Task 4.0: Mass and Heat Transfer Considerations for Reactor Design															
Task 5.0: Long-term Performance, Contaminants Testing and Technical															
Merit Comparison															
Subtask 5.1: Multi-cycle performance testing of both sorbents															
Subtask 5.2: Contaminant impact testing in packed-bed reactor															
Task 6.0: Cost Review and Scale-up of Selected Candidate															
Subtask 6.1: Preliminary sorbent production cost review															
Subtask 6.2: kilogram-scale production of selected sorbent															
Task 7.0: Preliminary process design															
Subtask 7.1 – Preliminary review of process requirements															
Subtask 7.2 – Preliminary process design															
Reporting															
Milestones															
Project Meeting															
	Project Progress				R	epo	porting								
		Milestones						Р	Project Meeting						