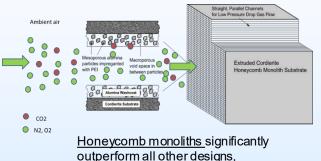
Demonstration of a Continuous Motion Direct Air Capture System DE-FE0031957

Miles Sakwa-Novak Global Thermostat Operations

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Program Overview


Federal: \$2,499,996 Cost Share: \$850,000 Total: \$3,349,996 Budget Period 1: 1/1/2021 – 1/31/2022 Budget Period 2: 2/1/2022 – 1/31/2023 Budget Period 3: 2/1/2023 – 7/31/2023

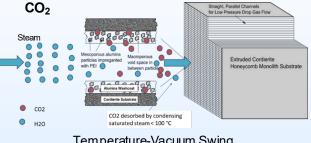
Project Participants:

Global Thermostat
Georgia Institute of Technology
National Renewable Energy Laboratory
VADA
Zero Carbon Partners

Primary Objectives: Design and construction of a field-test unit demonstrating a continuous-motion direct air capture process, reducing complexity, CAPEX, & OPEX while increasing reliability

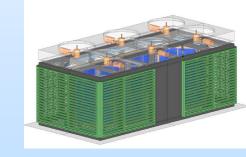
Technology Background: Concepts

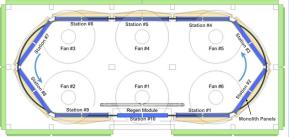
1. Moving Large Air Volumes Efficiently


enabling low pressure drop and minimum energy cost

2. Capturing CO₂ Selectively at 400 ppm

H_2N NH₂ Physically Impregnated PEI


Amine-based polymers, incorporated in proprietary coatings, yield selectivity, capture efficiency, and compatibility with honeycomb monolith approach



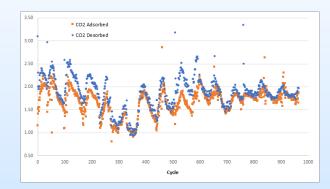
Temperature-Vacuum Swing Adsorption (TVSA) with steam as direct phase-change heat transfer fluid

5. Design for Continuous Improvement

Base capital design capable of receiving improved generations of monolith adsorbents to regularly upgrade capture capacity

Process and mechanical movement design enable low pressure drop multi-bed adsorption configuration

4. Capital Utilization Efficiency


Technology Background: Previous Work

Global Thermostat Single Panel Pilot (SPP)

R&D Pilot Plant for process development

Batch process with wide range of available conditions

Example SPP Operating Data

- Global Thermostat Lab Scale DAC Production Global Thermostat Monolith Adsorption Curves 0.7 Monolith Type 1 1.8 0.6 Monolith Type 2 Monolith Type 3 ₽ 0.5 ž 0.4 ပီ 0.3 0.6 § 0.2 0.4 0.1 0.2 15 50 100 150 Time(min) hours Monolith Development Data (Uptake Curves, Operating Data)
- DAC Monoliths developed via GT Joint Development Agreement utilized in project
- Substantial technical knowledge gained through previous project leveraged for success

Monolith Development

Technology Background: Advantages & Challenges

Technical / Economic Advantages:

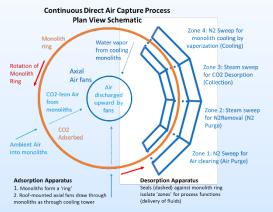
- Rapid cycles (<20min) enabled by monolith contactor (adsorption) and steam regen (desorption). Reduced amortized CAPEX
- High capital utilization efficiency (improved CAPEX) while maintaining low pressure drop (improved OPEX) via panel movement
- High uptakes enabled by amine dense sorbent (improved CAPEX and OPEX)

Technical / Economic Challenges:

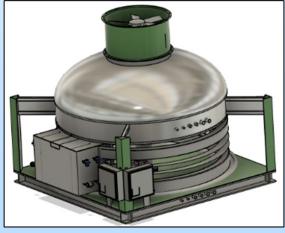
- Physical movement of large components can be mechanically challenging, particularly in a batch process (start/stop)
- Maintaining adequate sorbent lifetime over many cycles
- Wide parameter space with limited resources

Technical Approach/Project Scope

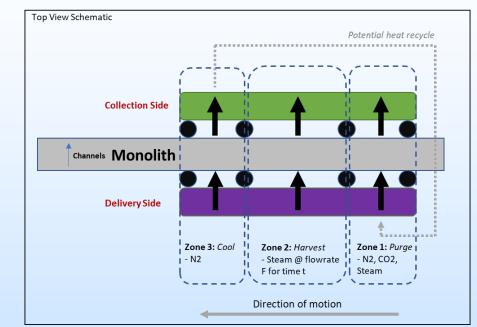
<u>Project Scope & Goal:</u> Develop and demonstrate *continuous DAC* prototype based on the GT technology platform


<u>Development philosophy:</u> *design big, build small*: prototype the elements to enable successful climate-scale DAC deployments

Project Arc:

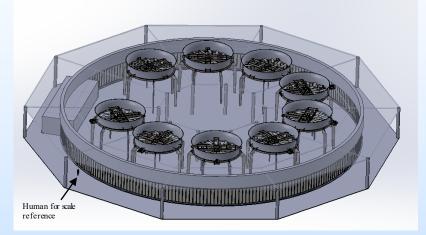

Tasks and Milestones		2021			2022					2023			
		Q2	Q3	Q4	J	F/M	Q2	Q3	Q4	J E	/M Q	2 Jul.	
Task 1.0 - Project Management and Planning													
Tele 2.5 Malasiala di Barras Garras dell'artes Faciles in addada de													
Tasks 2-5: Mechanical and Process Conceptualization, Engineering, and Analysis													
End of Year 1 Milestones: Mechcanical design complete, process basis established					\star								
					<i>.</i> .								
				-									
				_							_	_	
Tasks 6-11: Detailed Engineering, Fabrication, Construction, and Comssioning		-											
End of Year 2 Milestones: cDAC plant comissioned and ready for field test campaign										\star			
Tasks 12-14: Plant Field Testing Campaign and TEA/LCA Analysis													
End of Project Goals: Successful field test campaign, prescreening TEA/LCA complete												\star	

Continuous Process Concept


How to translate batch process to continuous process?

Version 1 Technology Concept

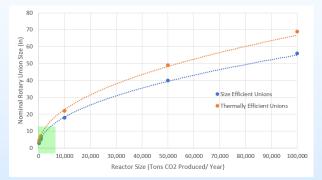
Version 1 Pilot Concept

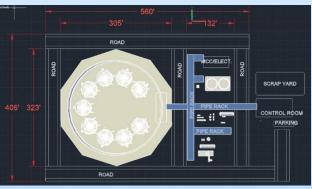

Version 1 Process Concept

Development Areas: *design big, build small*

Area	Approach
<u>Mechanical</u> : Movement, sealing, airflow	Iterative design and mockup testing
Process: Cooling, purging	Experiment & Modeling

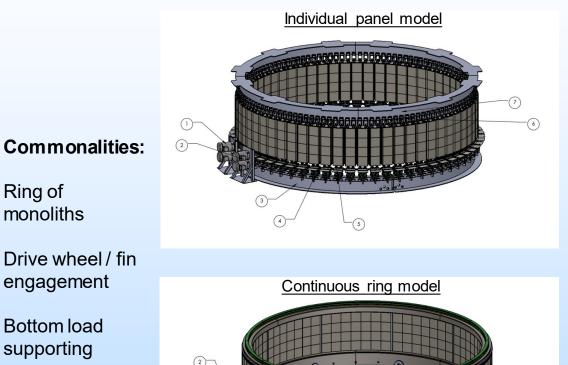
Continuous Process Scale Plant Concept


Modularize around air movement


~50 kta plant module used for scale assessment

- 9 fan plant module as base scale for mechanical concept evaluation
- All design decisions made with consideration to application to the 'large' scale

Move monoliths instead of move regen assembly



 Rotating fluid and electrical unions do not scale well

^{~50} kta plant GA

Mechanical Development: Monolith Movement

Two monolith movement system concepts:

Pros

- Shape flexibility: oval, irregular, circular
- Modular to square monolith panel

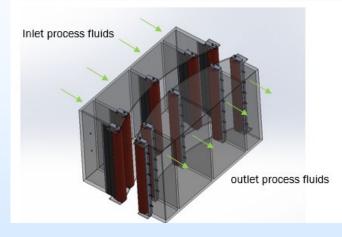
Cons

- Panel-to-panel sealing
- Many 'bogies'
- Dual motors
- High degrees of freedom in motion

Pros

- Rigid ring eliminates degrees of freedom
- · Single fin simplifies movement
- Few components

Cons

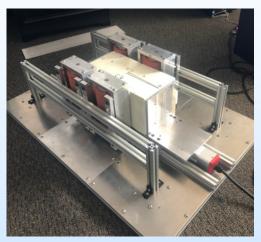

- Rigid body becomes sensitive to tolerances at large scale
- · Less modularity on monolith
- More curved components to fabricate

Continuous Ring

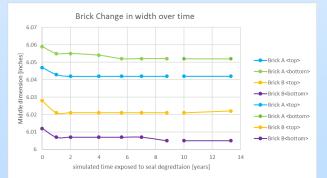
9

Mechanical Development: Seals

Regeneration area, zones, and seals

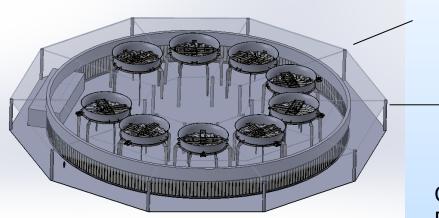

Regeneration Unit with Roller Seals

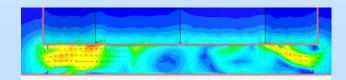
Development of Direct Contact Roller Seals:


Cylindrical roller seals that contact the face of the monolith

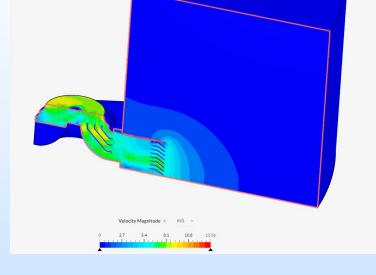
Create separation between fluid zones to enable temporal process steps

Will direct seal contact damage monoliths?


Assembled Seal Tester

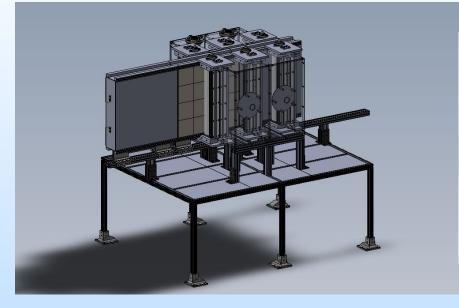


Negligible damage to monoliths after 13 years of simulated contact!

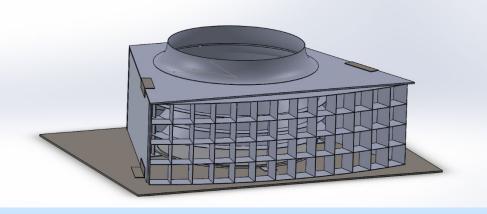

Mechanical Development: Air Movement

Low cost DAC requires efficient air movement

	Velocit	y Magnitu	de 🗉	m/s ~	
D	1.6	3.1	4.7	6.2	7.784
111	11111	11111	111	11111	1.1

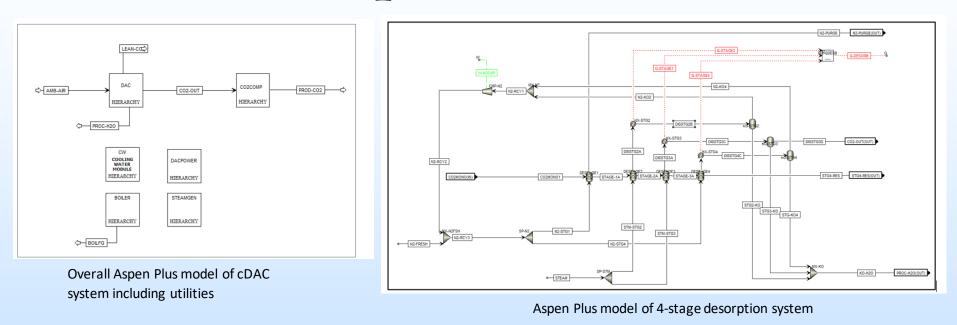


CFD analysis to analyze <u>airflow uniformity</u> (% RMS) and air movement efficiency (kWh / CFM)

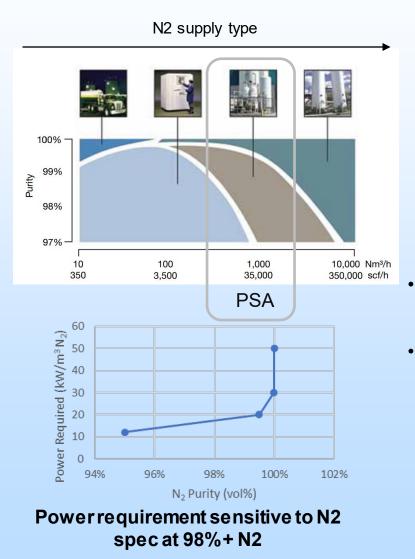

Project goals of 75% dP efficiency and < 10% RMS deviation of air inlet velocity

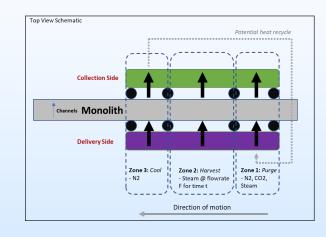
Regen and Airflow Mockups

Two zone regeneration assembly tester


Fan module mockup tester

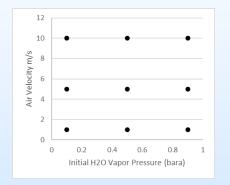
Smoke tests, pressure tests, model validation


dP, air velocity testing, model validation


Process Development: Plant Aspen Model

- Scalable model to evaluate costs at large scale and at pilot scale
- Steam generation, cooling water utilities, CO2 compression in scope
- To be adjusted, refined once process basis established

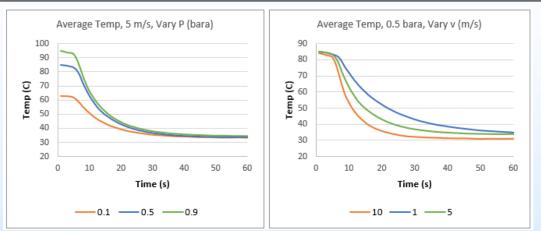
Process Development: Cooling

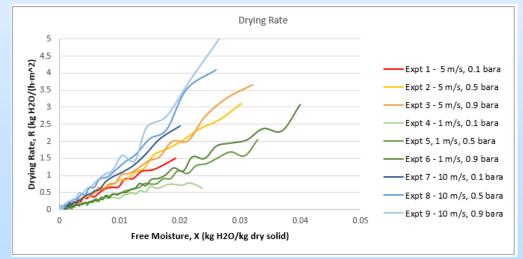


- Monolith cooling proposed to be carried out with N2 instead of with vacuum
- Cooling is necessary to reduce monolith oxidation

What are the tradeoffs with N2 purity, opex, capex, lifetime?

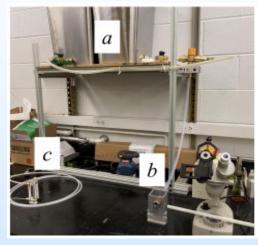
Process Development: Cooling

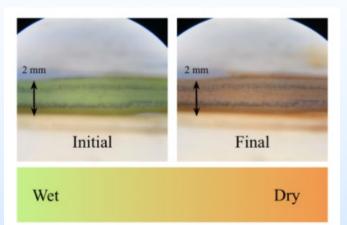

Experimental matrix on SPP for convective cooling profiles:



GT SPP

Cooling is rapid, dominated by evaporation, likely limited by external flowrate in these experiments


Average monolith surface temperatures during cooling



Drying rate as a function of free moisture content

Process Development: Cooling

Single channel experiments

Dye based indication method of tracking of monolith wetness during drying experiments

Project Goal: Develop single channel monolith evaporative cooling model, combine with oxidation rate law to evaluate cost and lifetime implications of process basis ranges

Apparatus for validation experiments at Georgia Tech

Single channel model \int_{x}^{y} \int_{x}^{a} $\partial_{t}T = \alpha_{w}\nabla^{2}T$, Solid Wall $\partial_{t}T = \alpha_{l}\partial_{y}^{2}T$, Liquid Layer $\partial_{t}T + \mathbf{u} \cdot \nabla T = \alpha_{g}\nabla^{2}T$, Gas

Plans for future testing/development/ commercialization

Project Scope:

- Develop and demonstrate prototype cDAC process
- Evaluate TEA/LCA and scale potential

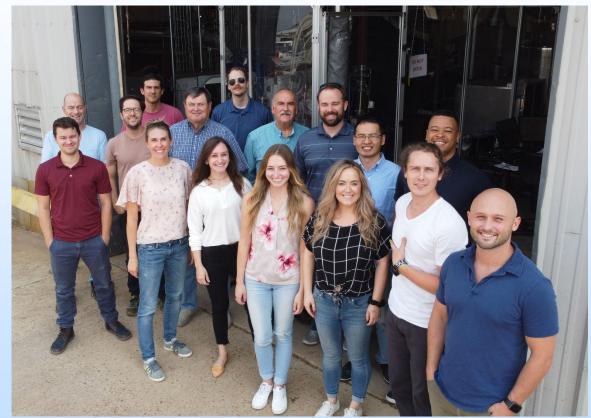
Future Project Scope:

- Refine mechanical/process/equipment selections based on technology improvements
- Scale up designs and build at larger scale, possibly for commercial application

Summary

GT cDAC development proceeding through targeted approach:

Development Areas: *design big, build small*


Area	Approach
<u>Mechanical</u> : Movement, sealing, airflow	Iterative design and mockup testing
Process: Cooling, purging	Experiment & Modeling

Learnings generated during project are general and extend beyond scope of project

Demonstration of cDAC remains on target for 2023

Team

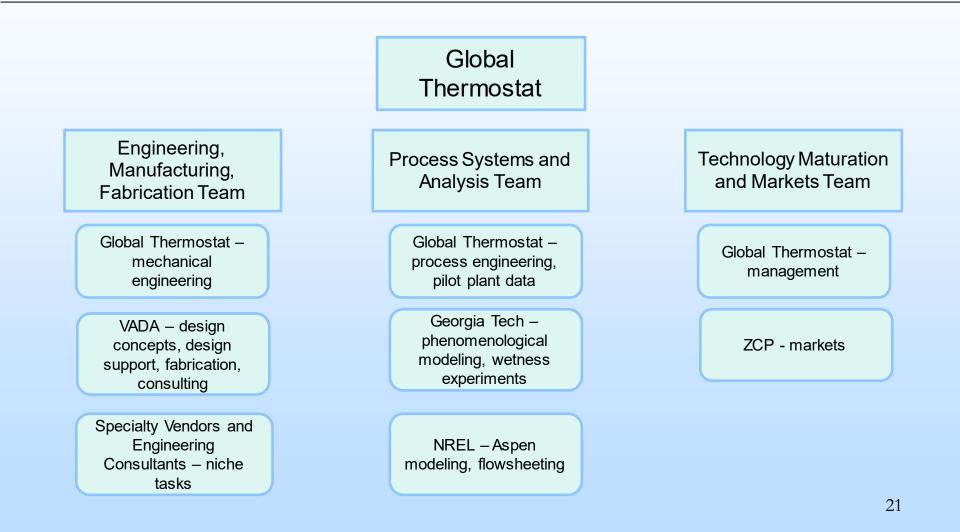
Global Thermostat

Eric Ping – Project Coordinator Miles Sakwa-Novak – Co-PI Yanhui Yuan Zach Foltz Ron Chance Jed Pruett Sarah Wyper Julian Bouckenooghe

Georgia Institute of Technology

Matthew Realff (PI, ChBE) Roman Grigoriev (Phys.) Michael Schatz (Phys.) Ari Glezer (MechE) Brendan McCluskey (Phys.)

National Renewable Energy Laboratory


Eric Tan (PI) Ryan Davis Kylee Harris

<u>VADA</u> Bud Klepper

Zero Carbon Partners David Elenowitz

Appendix

Organization Chart

Gantt Chart

Tasks and Milesteres	Assigned		2021		2022					2023				
Tasks and Milestones	Resources	Q1 Q2 Q3 Q4		Q4	J	F/M Q2		2 Q3 Q4		J F/M				
Task 1.0 - Project Management and Planning														
D1.1 - Project Management Plan	MTM													
D1.2 -Technology Maturation Plan	MTM													
D1.3 - EH&S Risk Assessment	MTM/Global													
D1.4 - Preliminary HAZOP	EMF													
D1.5 - Host Site Approval	Global													
Task 2.0 - Mechanical System Development														
D2.1 - Sealing and Movement System Concepts	EMF													
D2.2 - Basic Engineering of Mechanical System	EMF													
D2.3 - Detailed Engineering of Mechanical System	EMF													
Task 3.0 - Process Step Refinement and Development														
D3.1 - Base Channel Model CFD Development	PSA													
D3.2 - Experimental Model Validation	PSA													
Task 4.0 - Base Plant Model & TEA/LCA Scale Framework														
D4.1 - Plant-level Aspen Model	NREL/Global													
D4.2 - CAPEX Estimate and Scaling Analysis	VADA/Global													
Task 5.0 - Basic Engineering of Plant Process Equipment														
D5.1 - Basic Engineering of Process Components	EMF													
Go/No Go Decision (end of BP1)						\star								
Task 6.0 - Process Refinement and Lifetime Implications														
D6.1 - Purge Step Development & Simulation	PSA													
D6.2 - Evaluation of Sorbent Lifetime	PSA													
Task 7.0 - Detailed Engineering of Plant Process Equipment	EMF													
Task 8.0 - Mechanical System Fabrication and Commissioning	g													
D8.1- Mechanical System Fabrication and Delivery	EMF													
D8.2- Mechanical System Commissioning and Operation	EMF													
Task 9.0 - Comprehensive TEA & LCA and Scaling Analysis														
D9.1 - Baseline TEA & LCA	NREL/Global													
D9.2 - TEA & LCA Sensitivity Analysis	NREL/Global													
D9.3 - Scale-up vs. Scale-out Analysis	NREL/Global													
Task 10.0 - Fabrication and Integration of Plant Process Equip	pment													
Task 11.0 - Continuous DAC Process Commissioning														
D11.1 - Integrated Plant Check-out & Commissioning	Global													
D11.2 - Test Plan Development	Global													
Go/No Go Decision (end of BP2)											\star			
Task 12.0 - Continuous DAC Process Field Testing														
D12.1- Demonstration and testing of continuous DAC process	Global													
D12.2 - Continuous testing period	Global													
Task 13.0 - Refinement of Aspen Model	NREL/Global													
Task 14.0 - Prescreening TEA/LCA	NREL/MTM													