Membrane Adsorbents Comprising Self-Assembled Inorganic Nanocages (SINCs) for Super-fast Direct Air Capture Enabled by Passive Cooling DE-FE0031960

Thien (James) Tran University at Buffalo, The State University of New York

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Program Overview

- a. Funding (DOE: \$800,000; Cost Share: \$206,330)
- b. Overall Project Performance Dates: 10/1/20 3/31/22
- c. Project Participants: University at Buffalo (UB) and Trimeric Corporation (Trimeric)
- d. Overall Project Objectives
 - Year 1: design and prepare membrane adsorbent based on CO₂philic polymers and SINCs, and design operation cycles with solar heating and radiative cooling for CO₂ capture from air.
 - M13-M18: construct and characterize a DAC prototype, demonstrate the 100-h continuous operation for DAC, and complete the TEA.

Our Technology: Porous Membrane Adsorbents with Solar Energy

Substrates influence CO₂ sorption

Porous	Temp.	RH	CO ₂	Amine-functionalized						
supports	supports (°C) (%) (mmol/g)		Amine (wt%)	CO ₂ (mmol/g)						
Fume silica	75	0	0.61	PEI(30)	3.0					
SBA-15	75	0		PEI(30)	3.0					
γ alumina	30	50		PEI-800(23)	1.7					
MIL-101(Cr)	25	0	~0.05	PEI-800(60)	1.3					
Mg ₂ (dobpdc)	25	0		mmen	2.0					

Shi et al., Angew. Chem. Int. Ed. 59, 6984-7006 (2020)

Membrane Adsorbents

Flat-sheet membrane adsorbents with porosity 60 – 95% comprising CO₂-philic Self-Assembled Inorganic Nanocages (SINCs) and polymers

 $CO_{2} + 2RNH_{2} \leftrightarrow RNH_{3}^{+} + RNHCOO^{-}$ $CO_{2} + 2R_{1}R_{2}NH \leftrightarrow R_{1}R_{2}NH_{2}^{+} + R_{1}R_{2}NCOO^{-}$ $CO_{2} + R_{1}R_{2}NH + H_{2}O \leftrightarrow R_{1}R_{2}NH_{2}^{+}HCO_{3}^{-}$ $CO_{2} + R_{1}R_{2}R_{3}N + H_{2}O \leftrightarrow R_{1}R_{2}R_{3}NH^{+}HCO_{3}^{-}$

SEM photos of porous membrane

Self-Assembled Inorganic Nanocages (SINCs)

Solupor-PEI System

- Light weight -5 g/m^2
- High porosity
- Branched PEI
 - Higher N content $1 \mod N/42.8g$ PEI

H₂N

CO₂ Sorption Capacity @ 400ppm and 22°C

Sample	PEI content (wt%)	CO ₂ permeance (GPU)	CO2 capacity (mmol CO2/g sorbent)	Amine efficiency (mol CO ₂ /mol N)				
Solupor	0	1.8×10^{6}	0.05	n/a				
sPEI800-14	14	6.3x10 ⁴	0.30	0.09				
sPEI800-35	35	5.8x10 ⁴	0.34	0.04				
sPEI800-44	44	2.3×10^4	0.50	0.05				
sPEI25k-16	16	6.6x10 ⁴	0.40	0.11				
sPEI25k-35	35	4.9x10 ⁴	0.53	0.06				
sPEI25k-48	48	2.3x10 ⁴	0.51	0.05				

- Though both *s*PEI800-14 and *s*PEI25k-16 has the lowest PEI loading, they both exhibits the <u>highest amine efficiency</u>.
- **sPEI800-44** shows the highest CO₂ capacity per g of sorbent while it is the **sPEI25k-35** that exhibits the highest capacity.

Cycle-ability @ 400ppm and 22°C

Cycle#	CO2 capacity (mmol CO2/g sorbent)	Amine efficiency (mol CO ₂ /mol N)
1	0.51	0.05
2	0.47	0.04
3	0.47	0.04

9

Effect of Temperature on CO₂ Sorption Capacity

Increasing temperature increases CO₂ capacity

SINCs CO₂ capacity @ 400ppm and 22°C

Sample	CO ₂ capacity (mmol CO ₂ /g sorbent)						
NH ₂ -cage	0.13						
OPA-cage	0.10						
Bn-cage	0.07						

- Solution for impregnation:
 - 5 w/v% PEI800
 - $0.25 \text{ w/v}\% \text{ NH}_2\text{-cage}$
- <u>(*PEI* + *NH*₂-cage) loading</u> = 55 wt.%

- CO_2 capacity of (PEI+NH₂-cage) = 0.58 mmol CO_2/g
- <u>16% increase</u> as compared to *s*PEI800-44 (i.e. 0.50 mmol CO_2/g)

Radiative Cooling An Electricity-Free Cooling Technology

Gan, et al., Nat. Sustain. 2, 718 (2019)

Prototype Design

System Assemble

Sample Holder Heating Test

- Carbon black coating allows for high absorption of solar radiation.
- Focusing sunlight with Fresnel lens increases temperatures significantly.

 $\frac{\text{With Fresnel lens}}{\text{Temp.} = 95.6 \,^{\circ}\text{C}}$

Preliminary Cooling Evaluation

Trimeric Corporation (Trimeric)

- Privately-owned consulting firm located in Buda (Austin), Texas
- Provides technical services (i.e., expertise in the form of labor hours) to private industry and government-funded clients
- Specializes in process chemical engineering and R&D
 - 18 process chemical engineers, plus access to very experienced experts
- Is independent of licensed technologies or chemicals an unbiased advocate for our clients with a technology-neutral position
- Andrew Sexton: CO₂ Project Experience (Capture, Purification, Dehydration/Compression, Pipelines, Liquefaction)
 - Evaluation of PSA and TSA process options for sorbents under previous DOE funded projects and for commercial clients
 - DAC process design experience for commercial client

Summary

- Membrane adsorbents exhibits CO₂ capacity ~ 0.5 mmol CO₂/g at 400ppm CO₂ in Air and 22°C.
- Increasing temperature from <u>22°C to 50°C</u> results in 50% 100% higher CO₂
 capacity and amine efficiency.
- Various SINCs were synthesized and found to increase CO₂ capacity of membrane adsorbent.
- A working prototype for solar heating and radiative cooling were developed.

Future Plan

- Synthesize high amine-content SINCs.
- Further incorporate the most promising SINCs into membrane sorbent.
- Evaluate the effect humidity on CO₂ capacity.
- Carry out radiative cooling/heat outside.
- Assemble a functional prototype with the best membrane adsorbent
- Conceptual process design and TEA

Thank you for your attention!

Appendix

Project Timeline

Research Tasks		Month (10/2020 – 03/2022)																
		2	3	4	5	6	7	8	9	10 1	1	12	13	14	15	16 1	171	8
1. Project management and planning									35	%								
2. Optimize porous support			10	0%														
3. Synthesize and characterize SINCs						50	%											
4. Prepare membrane adsorbents									40	%								
5. Characterize membrane adsorbents												60	%					
6. Design and construct a prototype with rapid cooling and heating for adsorption/desorption cycle						35	%											
7. Lab-scale demonstration of continuous DAC															0%	6		
8. Conceptual process design and TEA													1()%				

Team and Facilities

Haiqing Lin

Tim Cook

Novel membrane materials for CO₂ capture

Self-assembly of discrete inorganic metallacycles & cages

Qiaoqiang Gan A

Thermal management

Andrew Sexton

TEA

Qualifications for CO₂ Capture, Sequestration and Processing

www.trimeric.con

consul

Developing a library of amine-bearing ligands for self-assembly

Ligand in progress

HOOC

COOH

 $\dot{N}H_2$

 NH_2

Upcoming – Adapting a route to postsynthetic modification

We continue to expand the *library of ligands* used to *increase amine-site density*.

Post-synthetic modification circumvents challenges posed by *acid-base interactions* between *amines* and *carboxylic acids*.

Post-synthetic modification adapted from: Queen, W. L., Inorg. Chem. **2021** ASAP.

Build

Part 2. Adsorption chamber

Radiative Cooling Film Spectrum

- Current radiative cooling (r.c.) film has near unity emissivity in atmospheric window (7-13µm)
- Allows for near ideal thermal transfer & cooling

Desorption chamber

One or multiple Fresnel lens will be employed to focus solar light to heat the sample.

Thermal insulation

A thermal insulation layer will be employed to ensure the temperature gradient between desorption chamber and absorption chamber.

Black coating will be painted to preheat the chamber.

• The coolant will be circled back to the cooling chamber, driven by a water pump.

• Cold coolant will be transported to the desorption chamber. When cooperated with fans, the temperature inside the desorption chamber will be lowered.

A polymer thin film will coat the chamber and release the heat via thermal radiation, thereby reducing the temperature.

Cooling chamber

Rotation tube (sample holder)

- Light will be concentrated by the Fresnel lens and heat the sample holder.
- Samples will be attached in each individual box and heated by the black coating.
- A gear motor will be fixed on the bottom and rotate the tube.

Heating/Desorption

Cooling/Adsorption

- Samples will be contained in each individual box. When functioning, a gear motor will rotate the tube and transport the samples between two chambers;
- In the desorption/heating process, solar light will be focused by Fresnel lens and heat up the black coating in the sample container. The temperature of the samples will rise rapidly, therefore releasing CO₂;
- In the adsorption/cooling process, the cold coolant cooled by radiative cooling will be cooperated with a fan to reduce the temperature. The temperature of the samples will be decreased, therefore enabling CO_2 capture.