MIL-101(Cr)-Amine Sorbents Evaluation Under Realistic Direct Air Capture Conditions DE-FE-FE0031952

Dr. Christopher W. Jones Dr. Ryan P. Lively Dr. Matthew J. Realff

Georgia Institute of Technology

U.S. Department of Energy National Energy Technology Laboratory Carbon Management and Natural Gas & Oil Research Project Review Meeting Virtual Meetings August 2 through August 31, 2021

Project Overview

➤ Funding

- DOE Funds: \$755,166 (79.73%)
- Cost share (ZCP Sorbent Development, LLC): \$191,482 (20.23%)
- Funding Period: 10/01/2020-03/31/2022
- Project Participants:
 - Georgia Institute of Technology
 - ZCP Sorbent Development, LLC

	FY	2021	FY 2	022	Total			
	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share		
Applicant	\$548,435		\$206,731		\$755,166			
Sub-recipient A, if proposed		\$138,000		\$53,482		\$191,482		
Total (\$)	\$548,435	\$138,000	\$206,731	\$53,482	\$755,166	\$191,482		
Total Cost Share %	20.10%		20.5	5%	20.23%			

Project Overview

- > Overall Project Objectives
 - Explore DAC performance of amine functionalized MIL-101(Cr) MOFs and build models of their adsorption behavior over a wide range of temperatures (-20 °C to 25 °C) and relative humidities (0% to 100%).
 - Develop and test the sub-ambient DAC materials in the forms of composite polymer/MOF fibers and on the surface of monoliths. (advance from TRL 2 to TRL 3)

Technology Background

PEI impregnated MIL-101(Cr) MOFs for ambient DAC (Darunte et al., 2016) 25 °C

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Aim to investigate the CO_2 adsorption capabilities of MIL-101(Cr)-amine sorbents over wide range of adsorption temperature (-20 to 25 °C) and RH (0 to ~100%) conditions.

Technology Background

Sub-ambient DAC cycles with small T swing (e.g. -20 °C to 25 °C)

- T/VSA using solid sorbents in a structured contactor (fibers or monoliths)
- Heat delivery mode TBD

Innovation: design of sorbents/processes for operation in practical, temperate outdoor adsorption temperature range of -20 to 25 °C, in all humidities.

Technology Background

Sub-ambient DAC cycles with small T swing (-20 °C to 25 °C; ∆T ~ 45 °C)

Today's state-of-the-art:

- 99% of all published DAC studies conducted at $T \ge 25 \text{ °C}$
- >50% of all published DAC studies conducted in absence of humidity
- Warm DAC gives improved kinetics, but requires handling of large water sorption loads

Proposed Innovation:

- Practical, outdoor DAC requires operation at cooler/colder temperatures & in all humidities
- Cool/cold operation may allow for more physisorption as well as less water sorption due to lower humidity; both offer potential for lower desorption energies

Project Schedule (Key Milestones)

Task/ Subtask	Milestone Title & Description	Planned Completion Date
1	Project Management Plan	Month 1
3.2/4.2	Development of MIL-101(Cr)-based fibers and monolith sorbents. MIL- 101(Cr) sorbent macrostructures, with at least two different compositions, successfully fabricated and structurally characterized.	Month 9 ↓ Month 13 (extended)
5/8	Evaluation of performance and stability of powder MIL-101(Cr)-based sorbents at sub-ambient conditions. CO_2 capacities will be measured for at least three sorbent powder types . Cyclic stability and rate of oxidative degradation will be measured for at least 1 sorbent at 3 different conditions.	Month 18
9	Translation of most promising powder MIL-101(Cr)-based sorbents to fiber and monolith forms . Developed macrostructures should have CO_2 capacity of at least 75% of the powder sorbent capacity.	Month 18
10	Employ models of adsorption and desorption behavior to estimate DAC system performance metrics; report swing capacity and energy consumption per ton CO_2 .	Month 18

Experimental Design & Work Plan

Characterization of MIL-101(Cr) powder, monolith, and fiber sorbents

Equipment for	Expected	Information acquired	ambient CO ₂ adsorption
lab-scale	experimental		testing with analytical
experiments	conditions		computational studies
Thermo- gravimetric System (TGA)	-20 to 25 °C, dry gas feed	CO ₂ equilibrium adsorption and desorption capacities, adsorption and desorption kinetic profiles	Experimental Computational CO ₂ capture performance under sub-
Volumetric	-20 to 25 °C, dry	CO ₂ adsorption isotherms	ambient
System (SAP)	gas feed		conditions modeling
Fixed bed breakthrough System + MS and IR detectors	-20 to 25 °C, humid gas feeds with relative humidity between 0 and ~80%	Breakthrough & equilibrium capacities, adsorption and desorption kinetic profiles	Stability to cycles and oxygen under sub-ambient conditions

Integration of lab scale sub

Project Success Criteria

Milestone	Decision Point	Date	Success Criteria
2	Development of MIL101(Cr)-based fibers and monolith sorbents. MIL-101(Cr) sorbent macrostructures, with at least two different compositions, successfully fabricated and structurally characterized.	Month 9 ↓ Month 13 (extended)	Successful synthesis of MIL-101(Cr)- amine fiber and monolith sorbents.
3	Evaluation of performance and stability of powder MIL-101(Cr)-based sorbents at sub-ambient conditions.	Month 18	1-2 MIL-101(Cr)-based powder sorbents identified as promising sorbents at sub-ambient conditions: good compromise between CO ₂ capacity, kinetics and stability (towards multiple cycles and oxygen).
4	Translation of best performing powder MIL-101(Cr)-amine sorbents to fiber and monolith forms.	Month 18	Performance of fiber or monolith is at least 75% of the powder performance.
5	Employing models of adsorption and desorption behavior to estimate DAC system performance metrics.	Month 18	Adsorption and desorption models represent experimental data and estimated DAC system metrics allow assessment of suitability for next stage of process development. 9

Project Risks & Mitigation Strategies

	Ris	sk Rating								
Perceive Risk	Probability	Impact	Overall	Mitigation/Response Strategy						
	(Low,	Med, Hig	h)							
Financial Risks:										
Existing equipment failure, replacement funds not in budget	Low	Med	Low	Many experiments will be carried out on existing equipment that is regularly maintained and failure is unlikely.						
Cost/Schedule Risks	:									
Delayed hiring of personnel	Med	High	Med	PIs will seek applications for project before notification of award. PIs will seek applicants already at Georgia Tech. (Delays due to slow worker approval)						
Delayed delivery of new equipment	Med	High	Med	If new equipment is delayed, existing equipment will be retrofitted with chillers to begin work on the project and limit delays. (Delays due to slow equipment delivery)						

	Ris	k Rating		
Perceive Risk	Probability	Impact	Overall	Mitigation/Response Strategy
	(Low,	Med, Hig	h)	
Technical/Scope Ris	ks:			
Unable to grow MIL-101(Cr) on monolith materials	Low	Med	Low	Previous literature indicates MIL-101(Cr) can be grown on alumina; work can continue if no other monolith materials enable MIL-101(Cr) growth. Extrusion and 3D printing of MIL- 101(Cr) monoliths is also feasible.
Amine-MIL- 101(Cr) sorbents not stable at low T	Med	Med	Med	Additional amines can be investigated. Previous work has found PEI-MIL-101(Cr) to be stable for adsorption at room temperature and work could continue with PEI.
Management, Plann	ing, and Over	sight Risk	s:	
Team collaboration and communication is poor	Low	Med	Low	Jones, Lively, and Realff work together in the same building at Georgia Tech and have successfully worked together before.
ES&H Risks:				
Accident associated with experimental testing	Low	High	Low	Laboratory designed for adsorption experiments. Gas cylinder management is already in place. Liquid nitrogen is already used and all experimentalists receive proper training.

Development of MIL-101(Cr) <u>Powders</u> Sorbents and <u>Baseline Testing</u>

Amine impregnated MIL-101(Cr) (400 ppm CO₂ capture at 25 °C)

30 wt% loading: physisorption dominant 50 wt% loading: chemisorption dominant

Amine impregnated MIL-101(Cr) (400 ppm CO₂ capture at -20 °C)

Reduced CO₂ adsorption: Reduced amine mobility at -20 °C (chemisorption dominant) Amine 1 > Amine 2: "Frozen" Amine 1 has more free volume to physically capture CO₂ than Amine 2 due to structural differences

13 Due to higher physisorption, Amine 1 shows better adsorption capacity and is easier to regenerate

Cyclic test (400 ppm CO₂ capture at -20 °C (2 h), desorption at 60 °C (2 h))

50 wt% Amine 1 impregnated MIL-101(Cr) powders

60 °C is sufficient to regenerate MIL-101(Cr)_amine 1(50)

Amine impregnated MIL-101(Cr) (400 ppm CO₂ capture at -20 °C)

MIL-101(Cr)_amine 2(30) may be a preferred sorbent for sub-ambient DAC due to *promising adsorption capacity* and *low regeneration temperature* (physisorption dominant)

Cyclic test (400 ppm CO₂ capture at -20 °C (2 h), desorption at 25 °C (2 h))

30 wt% Amine 2 impregnated MIL-101(Cr) powders

25 °C is sufficient to regenerate MIL-101(Cr)_amine 2(30) = ΔT of 45 °C Small temperature swing Still seek small capacity improvements

Single gas (CO₂ and N₂) adsorption isotherm of 30 wt% amine impregnated MIL-101(Cr) at -20 °C

Selective 400 ppm CO₂ capture over 80% N₂ at -20 °C

17

Sub-ambient DAC fixed bed test (dry and 70%RH at -20 °C)

Moisture has positive effect on capacity of sub-ambient DAC with MIL-101(Cr)_amine 2(30)

Cyclic fixed-bed tests under humid conditions (70% RH at -20 °C) 400 ppm CO₂ adsorption at -20 °C (2 h), desorption at 25 °C (2 h) MIL-101(Cr) amine 2(30)

CO₂ breakthrough curve

CO₂ capture capacity

19

30 wt% Amine 2 impregnated MIL-101(Cr) powders (physisorption dominant) <u>can be effectively regenerated at 25 °C even under humid conditions</u>.

CO₂/H₂O-TPD experiments (adsorption dry and humid at -20 °C)

MIL-101(Cr)_Amine 2(30)

Enhanced CO₂ adsorption under humid conditions mostly attributed to new peak from 20 °C and 35 °C

New CO₂ peak starts to appear after significant water desorption.

Thus, desorbed CO₂ may be related to HCO₃⁻ formation?

In situ IR may be deployed to probe this hypothesis.

Development of Preliminary Testing of MIL-101(Cr)-amine <u>Fiber</u> Sorbents

MIL-101(Cr)/CA fiber spinning

Stages	Flow rate, [mL/hr]	Take-up rate, [m/min]	Air gap, [cm]	Diameter, [μm]
1	150	10	5	480
2	200	10	5	571
3	250	10	5	678

21

Development of Preliminary Testing of MIL-101(Cr)-amine <u>Fiber</u> Sorbents

MIL-101(Cr)/CA fibers 140 MIL-101(Cr) loading 478 μm 571 µm 120 678 μm Weight fraction, (%) 00 00 001 00 80 60 40 20 0 -0 200 400 600 800 1000 Temperature, (°C) 100 MIL-101(Cr) fiber at -20 °C MIL-101(Cr) fiber at 25 °C 10 CO₂ adsorption, [mmol/g] 1 0.1 400 0.01 0.001 1E-4 0.1 1 10 100 P_{CO2}, [mbar]

Weight percent **Amine 1 loading** of Amine 1 in CO₂ adsorption, by EA, **MeOH** solution, (mmol/g fiber) (wt%) (wt%) 5 0.53 15 10 19 0.54 20 25 1.23 10 MIL-101(Cr) Fiber 15 wt% Amine 1 MIL-101(Cr) Fiber 19 wt% Amine 1 CO2 adsorption, (mmol/g) MIL-101(Cr) Fiber 25 wt% Amine 1 -20 ℃ 400 ppm 22 0.7 0.8 0.9 0.3 0.5 0.6 0.4 PCO₂, (mbar)

Amine 1 impregnated MIL-101(Cr)/CA fibers

Development of Preliminary Testing of MIL-101(Cr)-amine Monolith Sorbents

Synthesis of MIL-101(Cr) on monolith (Ramos-Fernandez et al., 2011)

Immersed in 1 wt% MIL-101(Cr) EtOH for 1 h Solvent was removed in oven (75 °C for 1 h) 5.9503 g 5.1937 g 5.9958 g 6.0114 g 8 h at 220 °C Seeding y-alumina 1.2 g coating Cr(NO₃)₃9H₂O 0.5 g Immersed in 33 wt% γ-alumina $C_6H_4(CO_2H)_2$ and 67 wt% water in 15 mL H₂O Calcination at 550 °C for 3 h

Will be analyzed by TGA to determine MIL-101(Cr) loading Precursor solution will be altered to enhance MIL-101(Cr) loading

CO₂ Adsorption Isotherm Modeling of MIL-101(Cr)-amine <u>**Powder</u> Sorbents**</u>

Plans for future testing/development/ commercialization

Tasks for future scale-up & testing:

- a. This project
 - -- assess preferred mode of incorporation into structured contactors (fiber vs. monolith)
 - -- complete & use process model to assess preferred operational conditions
- b. After this project
 - -- assess preferred modes of desorption (T, V, heating modes, etc.)
 - -- use technoeconomic model to find cost minima

Plans for future testing/development/ commercialization

Tasks for future scale-up & testing:

- c. Scale-up potential
 - -- sorbent components all commercially available at small scale; assess & develop supply chains for sorbent at larger scales
 - -- build and test automated low temperature DAC rig

Summary Slide

MIL-101(Cr) powder sorbents

- a. Amine impregnated MIL-101(Cr) powders showed promising CO_2 uptake even at -20 °C due to enhanced physisorption at cold temperatures.
- b. MIL-101(Cr)_amine 2(30) is a preferred sorbent for sub-ambient DAC due to promising adsorption capacity (1.1 mmol/g at -20 °C) and low regeneration temperature, 25 °C (physisorption dominant).
- c. Sub-ambient DAC capacity of MIL-101(Cr)_amine 2(30) was enhanced under humid conditions and stable working capacities (0.82 mmol/g) were obtained over 5 small humid temperature swing cycles (-20 °C ↔ 25 °C) showing promising stability to humidity.
- d. The effects of moisture may be further investigated with in situ cryogenic IR.

MIL-101(Cr) based fiber sorbents

- a. Large-scale MIL-101(Cr)/CA (cellulose acetate) fiber was spun and subsequentially infused with Amine 2.
- b. 25 wt% Amine 1 infused MIL-101(Cr)/CA fiber sorbents showed promising 400 ppm CO₂ uptake (1.2 mmol/g) at -20 °C.
- c. The amine loading will be further increased to maximize the CO₂ uptakes. **MIL-101(Cr) based monolith sorbents**
 - a. MIL-101(Cr) was successfully grown on the surface of the cordierite monolith support.
 - b. The MIL-101(Cr) loading on the monolith will be thermogravimetrically quantified and the synthesis process will be optimized to further increase MIL-101(Cr) loading on the monolith.

CO₂ adsorption isotherm modeling

a. Since the Langmuir isotherm model was not able to capture the CO_2 adsorption behavior over the whole Pco_2 range, a weighted Langmuir with linear term model was chosen for the thermodynamic modeling, showing acceptable accuracy.²⁸

Synthesis of MIL-101(Cr) (small and large batch)

*PP, CR, GR, and MS are the initials of researchers

Small batches MIL-101(Cr) reproduced results from literature^{*}.

Scaling up of MOFs synthesis somewhat reduced the BET surface area.

* Darunte, Lalit A., Aloysius D. Oetomo, Krista S. Walton, David S. Sholl, and Christopher W. Jones. "Direct air capture of CO₂ using amine functionalized MIL-101 (Cr)." *ACS Sustainable Chemistry & Engineering* 4, no. 10 (2016): 5761-5768.

Characterization of MIL-101(Cr) (XRD)

Synthesized MIL-101(Cr) with high crystallinity

* Darunte, Lalit A., Aloysius D. Oetomo, Krista S. Walton, David S. Sholl, and Christopher W. Jones. "Direct air capture of CO₂ using amine functionalized MIL-101 (Cr)." ACS Sustainable Chemistry & Engineering 4, no. 10 (2016): 5761-5768.

Characterization of MIL-101(Cr) (SEM)

Large batch

Small batch

Temperature Programmed Desorption (TPD) of amine impregnated MIL-101(Cr)

Study the interaction of CO₂ with amine impregnated MIL-101(Cr)

Temperature Programmed Desorption (TPD) of amine impregnated MIL-101(Cr)

Desorption after 400 ppm CO₂ adsorption at <u>25 °C</u>

Temperature Programmed Desorption (TPD) of amine impregnated MIL-101(Cr)

Desorption after 400 ppm CO₂ adsorption at -20 °C

Sub-ambient DAC Fixed Bed Experiments (MIL-101(Cr)_amine 2(30) powders)

Dry

- 1. Activation (110 °C with N₂ for 3 hr)
- 2. Adsorption of dry 400 ppm CO₂/He at -20 °C

Humid

- 1. Activation (110 °C with N₂ for 3 hr)
- 2. Pre-humidification (wet N₂, 70%RH) at -20 °C
- 3. Adsorption of humid (70%RH) 400 ppm CO₂/He at -20 °C

CO₂/H₂O-TPD of 30 wt% amine 2 impregnated MIL-101(Cr) (Fixed bed experiment)

Direct Langmuir model fitting results

$$q_e = \frac{q_m b P_{CO_2}}{1 + b P_{CO_2}}$$

	Fiber	L	angmuir Fit		Note
T (°C)	Fibel	q _m	b	R ²	
	MIL-101(Cr)	8.8971	2.79E-04	0.9999	
	MIL-101(Cr)_50 wt% amine 1	2.6399	6.95E+00	0.9246	
	MIL-101(Cr)_30 wt% amine 1	3.0281	8.35E-03	0.9017	
25	MIL-101(Cr)_10 wt% amine 1	5.1196	5.39E-04	0.9990	
	MIL-101(Cr)_50 wt% amine 2	3.3967	4.53E+00	0.7530	
-	MIL-101(Cr)_30 wt% amine 2	2.9704	1.77E-02	0.7849	
	MIL-101(Cr)_10 wt% amine 2	6.5815	3.36E-04	0.9998	
	MIL-101(Cr)	13.1907	7.34E-04	0.9996	
	MIL-101(Cr)_50 wt% amine 1	1.8174	1.17E+01	1	Overfit
	MIL-101(Cr)_30 wt% amine 1	7.1520	4.76E-03	0.8618	
-20	MIL-101(Cr)_10 wt% amine 1	11.2552	8.36E-04	0.9980	
	MIL-101(Cr)_50 wt% amine 2	1.3545	5.04E+00	1	Overfit
	MIL-101(Cr)_30 wt% amine 2	8.0579	5.45E-03	0.8037	
T (°C) 25	MIL-101(Cr)_10 wt% amine 2	13.3880	7.58E-04	0.9992	

Weighted Langmuir with linear model fitting results (Weight = 10⁴ for the First 4 Data Points and Weight = 10² for the Fifth Data Point)

T (°C)	Fiber	Weigl	Weighted Langmuir Plus Linear Term Fit								
T (°C)	Fiber	q _m	b	С	R ²	Note					
	MIL-101(Cr)	3.4556	4.94E-04	8.038E-04	Par Term Fit R2 04 0.9999 02 0.9974 03 0.9564 03 0.9955 03 0.9955 03 0.9955 03 0.99579 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99995 03 0.99730 03 0.9886 +01 1 03 0.9745 03 0.9896						
	MIL-101(Cr)_50 wt% amine 1	2.3592	1.17E+01	3.535E-02	0.9974						
	MIL-101(Cr)_30 wt% amine 1	0.5813	2.04E+00	2.852E-03	0.9564						
25	MIL-101(Cr)_10 wt% amine 1	0.0536	3.09E-01	1.856E-03	0.9955						
	MIL-101(Cr)_50 wt% amine 2	2.8165	1.02E+01	1.391E-03	0.9685						
	MIL-101(Cr)_30 wt% amine 2	0.8227	3.28E+00	2.867E-03	0.9579						
	MIL-101(Cr)_10 wt% amine 2	0.1396	1.55E-02	1.569E-03	0.9995						
	MIL-101(Cr)	3.4048	2.38E-03	3.267E-03	0.9999						
	MIL-101(Cr)_50 wt% amine 1	498.60	1.49E-01	-6.632E+01	1	Overfit					
	MIL-101(Cr)_30 wt% amine 1	1.0894	7.98E+00	6.033E-03	0.9730						
-20	MIL-101(Cr)_10 wt% amine 1	0.1257	1.58E+00	5.512E-03	0.9886						
	MIL-101(Cr)_50 wt% amine 2	380.45	1.16E-01	-3.999E+01	1	Overfit					
	MIL-101(Cr)_30 wt% amine 2	1.4423	9.80E+00	6.779E-03	0.9745						
	MIL-101(Cr)_10 wt% amine 2	0.1143	6.49E-01	6.195E-03	0.9896						

$$q_{eq} = \frac{q_m b P_{CO_2}}{1 + b P_{CO_2}} + c P_{CO_2}$$

1

Organization Chart

- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
 - Primary PI, Christopher Jones: project director and communicate with DOE, developing MOFs powder sorbents and supporting MOFs on monolithic contactors for DAC
 - Co-PI, Ryan Lively: designing and fabricating MOFs bearing fiber sorbents for DAC, process development
 - Co-PI, Matthew Realff: DAC modeling and techno-economic/life cycle analysis
- ZCP Sorbent Development, LLC
 - Provide cost share by directly funding personnel in the project

Gantt Chart

ý	n oer				Yea	ar 1		Ye	ear 2	Task	
Tasl	Tear Memt	Task Description	М	Q1	Q2	Q3	Q4	Q1	Q2	Start Date	Task End Date
1	CWJ	Project Management, Planning and Reporting	M1								
2		Development of MIL-101(Cr) powder sorbents									
2.1	CWJ	Synthesis of sorbent powder samples								10/01/20	02/28/21
2.2		Baseline testing of powder sorbents								11/01/20	02/28/21
3		Development and preliminary testing of MIL-101(Cr)-amine fiber sorbents									
3.1		Preparation of MIL-101(Cr) fibers								10/01/20	02/28/21
3.2	RPL	Preparation and characterization of amine loaded MIL-101(Cr) fibers	M2							02/01/21	06/30/21
3.3		Preliminary testing of CO ₂ adsorption performance over MIL- 101(Cr)-based fiber sorbents								06/01/21	11/30/21
4		Development and preliminary testing of MIL-101(Cr)-amine monolith sorbents									
4.1		Synthesis of MIL-101(Cr) on monolith supports								10/01/20	04/31/21
4.2	CWJ RPL	Preparation and characterization of amine loaded MIL-101(Cr) monoliths	M2							02/01/21	06/30/21
4.3		Preliminary testing of CO ₂ adsorption performance over MIL- 101(Cr)-amine monolith sorbents								06/01/21	11/30/21
5		Development of powder MIL-101(Cr)-based sorbents at sub ambient conditions									
5.1	CWJ	CO ₂ adsorption testing of powder MIL-101(Cr)-based sorbent at sub-ambient conditions								12/01/20	10/31/21
5.2	2	Stability of powder MIL-101(Cr)-based sorbents to humidity	M3							03/01/21	11/30/21

M indicates milestone.

Gantt Chart

k	n ber				Yea		ır 1				Ye	ar 2	Task	TI	
Tas	Tear Meml	Task Description M		Q1		Q2		Q3		Q4		Q1	Q2	Start Date	End Date
6		Development of MIL-101(Cr)-amine monolith sorbent via 3D printing			Γ				Τ						
6.1	1	Development of 3D printing procedure for MIL-101(Cr) monoliths												10/01/20	05/30/21
6.2	CWJ RPL	Testing of CO ₂ adsorption performance for 3D printed MIL- 101(Cr)-amine monolith sorbents												05/01/21	12/31/22
6.3		Investigation of effect of monolith properties on CO ₂ adsorption performance												09/01/21	03/31/22
7		Build models of the adsorption and desorption behavior of MIL- 101(Cr)-amine materials													
7.1		Model equilibrium adsorption behavior												02/01/21	10/31/21
7.2	MJR	Model kinetics of adsorption behavior												02/01/21	10/31/21
7.3		Model equilibrium desorption behavior												02/01/21	10/31/21
7.4		Model kinetics of desorption behavior												02/01/21	10/31/21
8		Measuring stability of MIL-101(Cr)-based sorbent powders at sub-ambient conditions													
8.1	CWJ	Stability of amine-MIL-101(Cr) sorbents to cyclic operation at sub ambient conditions												10/01/21	03/31/22
8.2		Stability of amine-MIL-101(Cr) sorbents to oxygen	M3											10/01/21	03/31/22
9		Translation of best performing powder MIL-101(Cr)-amine sorbents to fiber and monolith forms													
9.1	CWJ RPL	Synthesis and testing of best powder sorbent samples into fiber form												09/01/21	03/31/22
9.2		Synthesis and testing of best powder sorbent samples into monolith form	M4											09/01/21	03/31/22
10		Estimate DAC system performance metrics													
10.1		Determine estimated swing capacity and productivity of adsorbents												10/01/21	03/31/22
10.2	MJR	Determine estimated energy consumption per ton CO ₂												10/01/21	03/31/22
10.3		Determine the system cost and life cycle energy inventory for 1 Mton of CO ₂ scale system	M5											10/01/21	03/31/22

M indicates milestone.